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DISCLAIMER 
 

"This report was prepared as an account of work sponsored by an agency of the 
United States Government. Neither the United States Government nor any agency 
thereof, nor any of their employees, makes any warranty, express or implied, or assumes 
any legal liability or responsibility for the accuracy, completeness, or usefulness of any 
information, apparatus, product, or process disclosed, or represents that its use would not 
infringe privately owned rights. Reference herein to any specific commercial product, 
process, or service by trade name, trademark, manufacturer, or otherwise does not 
necessarily constitute or imply its endorsement, recommendation, or favoring by the 
United States Government or any agency thereof. The views and opinions of authors 
expressed herein do not necessarily state or reflect those of the United States Government 
or any agency thereof." 
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ABSTRACT 
 

Objective: To characterize the fluid properties and fluid-rock interactions that are needed 
for formation evaluation by NMR well logging. 

 

This project is a partnership between Professor George J. Hirasaki at Rice 
University and Professor Kishore Mohanty at University of Houston.  In addition to the 
DOE, this project is supported by a consortium of oil companies and service companies. 

The fluid properties characterization has emphasized the departure of live oils 
from correlations based on dead oils.  New measurements are reported for ethane and 
propane.  Mixing rules are developed for methane and gases without protons.  The 
coupling between the relaxation time distribution and the diffusivity distribution is 
demonstrated with a binary mixture of hexane and squalene.  Asphaltic components can 
result in a difference between the T1 and T2 relaxation time distributions.  This difference 
is a function of viscosity and NMR Larmor frequency. 

The fluid-rock interactions that are reported here are the effects of surface 
relaxation and diffusion.  The consequence of not being in the fast diffusion regime is 
examined.  Experimental and theoretical aspects of CPMG measurements in a constant 
field gradient are examined.  The pulse field gradient method is explored to evaluate 
vuggy carbonates. 

The objectives of pore morphology and rock characterization are to identify vug 
connectivity by using X-ray CT scan, and to improve NMR permeability correlation. CT 
scanning of dry Yates core material shows that uniformity of vug distribution varies from 
core to core. CT scanning of core floods in one Chester Field sample shows that the vugs 
are non-touching. 
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INTRODUCTION 
 

Objective: To characterize the fluid properties and fluid-rock interactions which are 
needed for formation evaluation by NMR well logging.   

 NMR well logging is finding wide use in formation evaluation.  The formation 
parameters commonly estimated are porosity, permeability, and capillary bound water.  
Special cases include estimation of oil viscosity, residual oil saturation, location of 
oil/water contact, and interpretation on whether the hydrocarbon is oil or gas.  In most 
cases, it is adequate to determine if the formation is sandstone or carbonate and then use 
default parameters and interpretation methods.  However, it is important to recognize the 
exceptional cases and have parameters and interpretation methods for these cases. 

 Default rock and fluid properties are very useful in the interpretation of NMR logs 
because the exact lithology and fluid composition of the logged interval may not be 
known.  In most cases it is necessary to only know if the formation is sandstone or 
carbonate.  For example, a water-wet sandstone formation with insignificant internal 
gradient effects, having microporosity that is diffusionally isolated from the macropores 
and containing a hydrocarbon with a unit hydrogen index and long bulk relaxation time 
can use a 33 ms T2 cutoff to estimate the volume of capillary-bound water, mobile fluids, 
total porosity, and permeability (Kenyon, 1997; Kleinberg and Vinegar, 1996; Straley, et 
al., 1997).  However, there are limits to the validity of the default properties and core 
analysis or fluid analysis will be needed in these cases to refine the correlations. 

 Some exceptions we propose to address are as follows: (1) departure of the 
relaxation time – viscosity correlation for methane-containing live oil from existing 
correlations based on stock tank oils and viscosity standards, (2) departure of the live oil 
hydrogen index from unity or the correlations based on alkanes or on API gravity, (3) 
crude oils that have bulk fluid relaxation time distributions that overlap with that for the 
capillary bound water, (4) wettability alterations that result in oil relaxation time 
distributions that overlap with that for the capillary bound water, (5) wettability alteration 
with crude oils and oil based drilling fluids that alter value of the capillary bound water 
from that of water-wet conditions, (6) diffusion effects resulting from internal gradients 
which cause an echo spacing dependent shortening of the relaxation time distribution for 
both brine and hydrocarbons, (7) diffusional coupling between the brine in the 
micropores and the brine in the macropores, and (8) estimation of permeability of vuggy 
carbonates.  
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EXECUTIVE SUMMARY 

The work is divided into; Task 1.0 Fluid Properties, Task 2.0 Fluid-Rock 
Interactions, Task 3.0 Pore Morphology/Rock Characterization. 

Task 1.0 Fluid Properties 
The main emphasis of fluid properties is the characterization of live oils.  The 

relaxation time versus oil viscosity correlations in the literature are based on dead oils.  
Live oils are expected to differ from dead oils because methane relaxes with the spin-
rotation mechanism while higher molecular weight hydrocarbons relax by the dipole-
dipole mechanism.  These two mechanisms have the opposite dependence on viscosity.  
A correlation between relaxation time, diffusivity, and gas/oil ratio was developed and 
reported in the 1st annual report.  This report has measurements of relaxation time and 
diffusivity of pure ethane and propane.  These two hydrocarbons are components of 
natural gas in addition to methane.  The results show that ethane, similar to methane, has 
a significant spin-rotation contribution to relaxation, even as a liquid.  Propane has 
relaxation time dependence more similar to that of the higher alkanes but it also appears 
to have a small contribution from spin-rotation.  Literature data show the influence of gas 
components without hydrogen, such as nitrogen and carbon dioxide on the relaxation of 
methane.  Models for the contributions of these components are presented. 

Several methods of fluid identification in NMR logging depend on the difference 
of both the relaxation time and diffusivity of the fluids.  Crude oils often have a broad 
relaxation time and diffusivity distributions.  One recent fluid identification method 
assumes that the distributions of relaxation time and diffusivity are coupled.  Laboratory 
measurements were made with a binary mixture of n-hexane and squalene to verify this 
assumption. 

Asphaltic oil may be problematic because of the broad relaxation time distribution 
and possibly reduced hydrogen index.  The ratio of T1/T2 is a function of the viscosity and 
asphaltene content as well as the Larmor frequency. 

Task 2.0 Fluid-Rock Interactions 
A basic assumption for estimating the pore size distribution from the relaxation 

time distribution is that the system is in the, “fast-diffusion limit.”  This condition exists 
when the diffusivity of the fluid in the pore is large enough that the magnetization profile 
in the pore has a uniform value due to being “well-mixed” by diffusion.  The relaxation 
response when the system is not in the fast-diffusion limit is examined.  The analytical 
solution for the response shows not a single relaxation time for the pore but rather a 
dominant relaxation time and several shorter and smaller amplitude relaxation times.  The 
mean relaxation time for the slab, cylinder, and spherical pore geometry are presented as 
a function of dimensionless groups.  The dimensionless groups are the ratio of surface 
relaxation rate to diffusion rate and the bulk relaxation time to the fast-diffusion surface 
relaxation time. 

Constant gradient CPMG is used in NMR well logging for fluid identification.  A 
numerical investigation examines the CPMG response in a 1-D pore with zero surface 
relaxation.  The relaxation time can be expressed as a function of two dimensionless 
groups.  The analysis show that the values of the dimensionless groups which define the 
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boundary between the different regimes are different from the values presented in the 
literature. 

Fluid identification with NMR logs is made with a static magnetic field gradient.  
Some issues with laboratory gradient CPMG measurements are discussed.  Gradients 
established with a electromagnet develops heat and a change in the temperature of the 
permanent magnet will change the Larmor frequency.  Even with a cooling system, the 
system must be operated long enough to reach a steady state condition.  The interval 
between the 90° pulse and the first 180° pulse in a gradient CPMG sequence should be 
slightly less than one-half of the echo spacing.  The echo shape in gradient CPMG is very 
narrow and the timing may need to be adjusted to measure the peak of the echo. 

The relaxation time distribution is not a good estimator of permeability in vuggy 
carbonates.  This is because the relaxation time is an estimator of the pore body size 
distributions and the pore body size of carbonates does not correlate well with the pore 
throat size.  Measurement of restricted diffusion with pulse field gradient measurements 
has the potential to measure the tortuosity of the medium.  Restricted diffusion was 
measured for two vuggy carbonate samples, one high permeability and the other low 
permeability.  Pentane was used as the fluid since it has a higher diffusivity and 
relaxation time and a lower surface relaxivity compared to water. 

Task 3.0 Pore Morphology/Rock Characterization. 

The objectives of pore morphology and rock characterization are to identify vug 
connectivity by using X-ray CT scan, and to improve NMR permeability correlation.  CT 
scanning of dry Yates core material shows that uniformity of vug distribution varies from 
core to core.  CT scanning of core floods in one Chester Field sample shows that the vugs 
are non-touching. 
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Task 1. Fluid Properties. 
 

Relaxation Time and Self-Diffusion Measurements of Pure 
Ethane and Propane 

 
Ying Zhang, George J. Hirasaki, Riki Kobayashi, and Waylon House 

Rice University, Houston, Texas 
 
Abstract 
 

The proton spin lattice relaxation time T1 and self-diffusion coefficient D have 
been measured in ethane and propane from 20 to 52 °C at pressures up to 6000 psia using 
an 89MHz NMR apparatus. 
 
I. Introduction 
 
 Nuclear Magnetic Resonance (NMR) technique is based on the measurements of 
absorption of electromagnetic radiation of material in a magnetic field. It can provide the 
information of spin-lattice relaxation time, T1, and the diffusion coefficient, D. NMR 
technique has been widely used for studies of molecular motion and for the measurements 
of rock and fluid properties for the past decades. 

Viscosity and diffusivity are important transport properties in understanding the 
flow of fluid in porous media. Figure 1 is the plot of relaxation time versus 
viscosity/temperature for pure alkanes and alkane mixtures. 1-6 Previous work shows that 
pure higher alkanes, higher alkane mixtures, viscosity standards and stock tank crude oils 
have NMR relaxation times which vary linearly with viscosity/temperature on a log-log 
scale. The work by this lab shows that pure methane and methane-alkane mixtures at 
some temperatures and pressures do not follow the trend. Methane relaxes by spin 
rotation mechanism in addition to dipole-dipole interactions while other higher alkanes 
relax only by dipole-dipole interactions. The straight line of liquid ethane departs from 
the linear correlation of higher alkanes. It is interesting to note that the curve of liquid 
methane converges to the curve of liquid ethane with increasing viscosity/temperature. 

Propane is a non-polar alkane containing three C-atoms and is a substance of great 
technical importance. In addition, ethane and propane are also common components of 
natural gas associated with oils at reservoir conditions.  However, the NMR relaxation 
time has not been previously measured for these materials at conditions typical of 
petroleum reservoirs.   

It is not certain if ethane and propane will relax by spin-rotation mechanism like 
methane or by dipole-dipole interactions as other higher alkanes. So the objectives of this 
work are to measure proton spin-lattice relaxation times and self-diffusion coefficients of 
ethane and propane. Then the relationships between transport properties, temperature and 
relaxation times were investigated. 



 

 11

 
 

 
Figure 1 T1 versus viscosity/temperature plot 

 
II. Experimental procedure 
 
2.1. Equipment 
 
 Relaxation times and self-diffusion of ethane and propane at elevated 
temperatures and pressures were measured with a super-conducting NMR spectrometer 3, 

7. This spectrometer is connected with a high pressure vapor-liquid equilibrium apparatus 
and a temperature regulated air bath that maintains a constant temperature of the fluid as 
it is introduced to the NMR probe. Figure 2 is a schematic diagram of the apparatus. The 
magnet is a super-conducting magnet made by Oxford with the proton frequency of 89 
MHz. It is kept at liquid helium temperature. The probe is made specifically for high 
pressure fluids by constructing the sample chamber and sensing coils inside the pressure 
vessel. 
 The system pressure is generated by the two high pressure hand pumps, HiP 
Model 62-6-10. For fluid experiments, a hand pump with bigger volume is introduced to 
the system, which can help achieve high pressure. The pressures are measured at three 
different locations. Two pressure transducers are installed near the HiP high pressure 

1

10

100

1.E-05 1.E-04 1.E-03 1.E-02
Viscosity/Temperature (cp/K)

T
1 (

se
c)

pure C5 to C16 [Zega et al] pure C5 to C16 [Kashaev et al]
saturated C1 vapor [Gerritsma et al] C1(d=0.035 g/cm^3) [Gerritsma et al]
C1 liquid [Gerritsma et al] C1+C10 liquid [Lo et al]
C1+C10 vapor [Lo et al] C1+C16 liquid [ Lo et al]
C1+C16 vapor [Lo et al] C1+C6 Liquid [Lo et al]
C1+C6 vapor [Lo et al] C2 liquid [Muller et al]
linear fit of pure higher alkanes [Lo et al]
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pumps, and the other one is installed between the sapphire cell and NMR probe. The 
pressure transducers used to measure the pump pressure are Setra Model 204, with 
pressure range 0 to 5000 psig. The one used to measure system pressure is Setra Model 
280E, with pressure range 0 to 10000 psig. All of the pressure transducers are connected 
to the Omega high performance strain gauge indicators model DP41-S for pressure 
readings. The transducers are calibrated with a Ruska dead weight gauge. 

The temperature is controlled by an air bath. Heat is generated by eight coiled 
Nichrome heating elements. Six of the heating elements are connected in series to a 
power stat to supply a baseline output. The others are connected to a Bayley Model 123 
precision temperature controller. The actual NMR system is presented in Figure 3. Air 
from the bath is circulated externally to the probe by four blowers. Two of them are right 
below the heating elements and blow the hot air to the upper part of the air bath system. 
The top blower moves hot air to the probe through PVC pipes and the exhausted hot air is 
sucked out of the conduit by the bottom blower. Thus the return air goes through the 
heater unit and is reheated. The temperature operating range is 20 oC to 60 oC. Three non-
magnetic RTDs (resistant temperature detectors) are added to the apparatus for 
temperature measurements. The temperatures are taken in the closed air bath system, at 
the probe and at the magnet bore. The RTDs are connected to Omega Model CN77373-
C2 temperature meters. The temperature accuracy is +0.2 oC. The reported temperature is 
the one taken at the sample probe. 
 There are two problems in the heating system. First, the magnet must be kept at 
liquid helium temperature, therefore it is surrounded by liquid helium and liquid nitrogen. 
When elevated temperature experiments are performed, the magnet bore could be heated 
thus the liquid nitrogen and liquid helium may be vaporized. In order to keep the magnet 
bore cool, a PVC liner is installed between the magnet bore and the sample probe. When 
high temperature experiments are performed, the hot air goes inside of the PVC liner, and 
chilled air is forced through between the magnet bore and the PVC liner. This way the 
magnet bore is kept well below 25 oC. The other problem is the thermal gradient. It can 
be minimized by wrapping thick fiberglass insulation around the PVC pipes. 

Two high pressure tubes are added to connect the sapphire cell and the sample 
probe, so the samples can be transferred to and from the probe. The samples are 
transferred by a magnetic pump. 



 

 13

 
 
 

Figure 2 Schematic diagram of the high pressure NMR apparatus 
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Figure 3 NMR system 

 
2.2. Sample preparation 
 
 Pure ethane and propane gases were obtained from Matheson Gas Products. The 
quality of both ethane and propane was Matheson purity, 99.95% minimum. The oxygen 
content was less than 2 ppm. No further purification of ethane and propane was attempted 
except further removal of oxygen. 
 Oxygen presence affects relaxation time significantly since it is paramagnetic. The 
oxygen contained in ethane and propane gases was further removed by passing the gases 
through an oxygen absorbing purifier, Matheson Model 6411. The oxygen content should 
be less than 0.1 ppm after purifying. 
 The apparatus should be cleaned before introducing a new sample. The apparatus 
was filled with hexane for one day and then the hexane was flushed out. Then the 
apparatus was heated to 50 oC and evacuated for at least eight hours to ensure complete 
removal of hexane. The cleaning procedure was performed three times.  
    
2.3. Spin-lattice relaxation time measurements 
 

T1 was measured by the inversion recovery method 18. The pulse sequence of 
inversion recovery method consists of a 180o pulse followed by a 90o pulse, as shown in 
Figure 4. The 180o pulse inverts the equilibrium magnetization M to the negative z-axis. 
After delay t, a 90o pulse is applied to tip the magnetization to x-y plane, the free 
induction decay is recorded to get the initial amplitude of the FID, which is proportional 
to M. For 
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Figure 4 Inversion recovery sequence 
 
each measurement, 35 to 50 FIDs are acquired over duration time t up to five times the 
longest T1. The data collected are t’s and their corresponding magnetization Mz. With the 
initial condition MZ = -M0 at t = 0, T1 for a single type of protons can be described as a 
function of t, 

E q u ilib riu m  sta te

M Z = M 0

M Z = -M 0

1 8 0 o
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180o pulse 90o pulse
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2.4. Self-diffusion measurements 
 

Pulse gradient spin-echo sequence 19 is used for diffusion measurements. The 
pulse sequence consists of a 90 o pulse, a 180 o pulse and two gradient pulses. A 90o pulse 
is first applied to flip the magnetization to y-axis, and the spin isochromats start to 
dephase due to the inhomogeneity of B0. Then a magnetic field gradient of strength g and 
duration δ is applied, followed by a 180 o pulse. The gradient causes the spins to dephase 
more rapidly, with the normal rate of dephasing resuming after the gradient pulse. The 
180o pulse flips the spins to reverse the direction of dephasing. A second identical 
gradient pulse is applied after the 180 o pulse to affect the dephasing rate. The time 
interval between two RF pulses is τ, and the time between two gradient pulses is called ∆. 
A spin-echo occurs at time 2τ. Figure 5 is the sequence of the pulse gradient spin-echo 
method. 
 

Figure 5 Sequence of pulse gradient spin-echo method 
 
For unbounded diffusion, the random walk motion of molecules can be described 

as a probability function P(r0 | r, t). r0 is the initial position of a molecule, and r is the 
position it moves to after the time interval t. According to Fick’s law, the probability can  
be described as 

( )
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∆
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In this equation, D is the diffusion coefficient. This corresponds to a Gaussian 
distribution with variant 2Dt. For a nuclear spin that diffuses according to the previous 
equation, the spin echo height attenuation R for the pulse gradient experiment is given by 

Dg
e

M
MR

)
3
1(222

)0(
δδγ −∆−

==       (3) 

where γ is the gyromagnetic ratio of the spin. M is the echo height with applied gradient, 
g, and M(0) is the echo height when the gradient is off. 
 When measuring the diffusion coefficient with pulse gradient spin-echo sequence, 
g, δ or ∆ can be varied. If we take the natural logarithm of Equation (3), we get 

DGR 





 −∆−= δδγ

3
1)ln( 222      (4) 

 The diffusion coefficient can be calculated by plotting ln(R) vs. 







 −∆− δδγ

3
1222 G . The slope is the diffusion coefficient. 

For each measurement, the gradient duration δ was changed. 30 to 40 data points 
were taken at different δ, and the corresponding echo height was recorded. All other 
variables (g and ∆) were kept constant within one experiment. 

 
2.5. Estimation of viscosity  

 
Figure 6 compares the estimated viscosity by SUPERTRAPP with literature 

experimental data 21 for pure ethane at 70, 100 and 130 oF in temperature, and 15 to 7000 
psia in pressure. SUPERTRAPP is a software for thermodynamic and transport properties 
estimation (NIST, 1999). 20 It turns out that SUPERTRAPP gives close estimations for 
ethane at higher temperature. For estimation of lower temperature (70 °F), the error 
increases with pressure. Therefore, interpolations of experimental data were used to 
estimate ethane viscosity. 

Viscosity of pure propane was estimated by SUPERTRAPP. Estimated viscosity 
data by SUPERTRAPP were compared with literature experimental data 12-17 at 70, 100 
and 130 oF in temperature, and 200 to 7000 psia in pressure. Figure 7 shows the results of 
comparison. SUPERTRAPP can give good estimation at the temperature range from 70 
°F to 130 oF. Since most of the measurements are in this temperature range, 
SUPERTRAPP estimations are adequate within experimental conditions. 
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Figure 6 Comparison of viscosity for pure ethane – experimental and SUPERTRAPP 
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Figure 7 Comparison of viscosity for pure propane – experimental and SUPERTRAPP 
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III. Results and discussion 
 
3.1. Relaxation time 
  
 Relaxation times of pure ethane and propane were measured at various 
temperatures and pressures. The results were posted in Table 1 and Table 2 respectively.  

Figure 8 is the plot of relaxation time versus viscosity/temperature for pure 
ethane, pure propane, pure methane and other pure alkanes. 1, 2, 4, 5, 6 The relaxation 
behavior of ethane and propane is similar to that of methane. Pure ethane and propane at 
some temperatures and pressures do not follow the linear relationship, either. It seems 
that the data points of propane are on the curve of methane. Similar to methane, ethane 
and propane may relax by spin rotation mechanism in addition to dipole-dipole 
interactions while other higher alkanes relax only by dipole-dipole interactions. The spin 
rotation mechanism has a different dependence on viscosity/temperature.  

Figure 9 shows the plot of T1 versus viscosity. It is interesting to note that the data 
points of methane, ethane, propane and other alkanes fall on the same curve by this plot. 
It will be meaningful to investigate what factors contribute to this phenomenon. 
 

Table 1 Spin-lattice relaxation time of pure ethane 
Temp. (°°°°C ) Pressure (psia) Viscosity (cP) Visc./Temp. (cP/K) Log mean T1 (sec) 

19.4 433 9.48E-03 3.24E-05 7.20 
19.3 495 9.68E-03 3.31E-05 7.28 
19.6 550 2.45E-02 8.38E-05 19.50 
20.0 572 3.95E-02 1.35E-04 20.39 
20.5 658 4.82E-02 1.64E-04 20.06 
20.0 990 5.14E-02 1.75E-04 22.10 
19.6 1612 5.85E-02 2.00E-04 21.24 
19.9 2344 6.56E-02 2.24E-04 22.01 
19.9 2948 7.07E-02 2.41E-04 19.52 
20.3 2764 6.91E-02 2.35E-04 18.37 
19.9 3825 7.76E-02 2.65E-04 19.40 
20.0 4409 8.16E-02 2.78E-04 17.46 
27.8 576 1.23E-02 4.09E-05 8.57 
28.7 706 3.43E-02 1.14E-04 16.75 
32.1 1336 4.78E-02 1.57E-04 18.28 
33.4 761 2.87E-02 9.36E-05 17.64 
34.9 1151 4.28E-02 1.39E-04 18.36 
36.1 663 1.88E-02 6.08E-05 9.94 
36.1 802 2.73E-02 8.82E-05 17.56 
36.3 613 1.54E-02 4.98E-05 8.49 
36.7 716 2.09E-02 6.76E-05 10.28 
46.1 739 1.71E-02 5.36E-05 9.07 
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Table 2 Spin-lattice relaxation time of pure propane 
Temp. (°°°°C ) Pressure (psia) Viscosity (cP) Visc./Temp. (cP/K) Log mean T1 (sec) 

18.7 114 8.48E-03 2.91E-05 3.93 
29.0 150 8.91E-03 2.95E-05 5.66 
33.0 160 9.05E-03 2.96E-05 3.79 
20.2 211 1.04E-01 3.54E-04 21.69 
20.7 403 1.06E-01 3.60E-04 21.11 
19.4 639 1.21E-01 4.13E-04 19.86 
20.4 971 1.14E-01 3.87E-04 21.71 
20.8 1501 1.20E-01 4.07E-04 23.16 
20.7 1994 1.25E-01 4.26E-04 22.65 
20.7 2501 1.31E-01 4.44E-04 21.99 
20.1 3026 1.37E-01 4.66E-04 20.99 
20.4 4040 1.46E-01 4.98E-04 18.70 
20.8 4569 1.51E-01 5.12E-04 20.91 
20.8 5003 1.54E-01 5.26E-04 18.91 
20.8 5940 1.63E-01 5.54E-04 18.72 
52.5 304 7.22E-02 2.22E-04 26.85 
52.3 604 7.75E-02 2.38E-04 26.42 
51.8 1049 8.46E-02 2.60E-04 26.67 
52.3 2023 9.60E-02 2.95E-04 25.49 
52.5 2981 1.06E-01 3.25E-04 23.50 
48.5 3960 1.18E-01 3.67E-04 23.24 
52.5 3997 1.15E-01 3.53E-04 23.73 
48.5 4987 1.27E-01 3.94E-04 21.58 
52.5 5979 1.31E-01 4.03E-04 19.39 
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Figure 8 T1 versus viscosity/temperature plot of pure alkanes 
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Figure 9 T1 versus viscosity plot of pure alkanes  
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3.2. Diffusion coefficient 
 
 Self-diffusion coefficients of ethane were also measured at various temperatures 
and pressures. The result was shown in Table 3. The attempt to measure diffusion 
coefficient for propane is not very successful. The power supply to the NMR 
spectrometer was changed and the new power line introduced significant noise. For vapor 
propane, the spin echo signal is too small to be measurable. Diffusion coefficient 
measurement can be made for liquid propane. However, the noise was still large although 
the scan number was doubled. The diffusion coefficient data obtained for the propane 
system may show greater error than the ethane system. Table 4 listed the diffusion 
coefficient data for propane. 

T1 dependence on diffusion coefficient was plotted and observed. Figure 10 is the 
plot of log mean T1 against diffusion coefficient for ethane, propane and other alkanes. 3 
Ethane and propane depart from the straight line of the pure higher alkanes. 
 

Table 3 Diffusion coefficients of pure ethane 
Temp. (°°°°C ) Pressure 

(psia) 
Viscosity (cP) Visc./Temp. (cP/K) Log mean D(cm2/sec) 

19.7 434 9.50E-03 3.24E-05 1.28E-03 
19.2 483 1.13E-02 3.87E-05 6.05E-04 
19.9 571 3.96E-02 1.35E-04 3.06E-04 
20.1 722 4.91E-02 1.68E-04 2.56E-04 
20.1 835 4.92E-02 1.68E-04 2.44E-04 
20.2 925 5.04E-02 1.72E-04 2.35E-04 
20.0 1560 5.80E-02 1.98E-04 2.38E-04 
20.1 2233 6.46E-02 2.20E-04 2.32E-04 
20.0 2929 7.04E-02 2.40E-04 2.05E-04 
19.8 3791 7.71E-02 2.63E-04 1.98E-04 
19.7 4557 8.27E-02 2.82E-04 1.87E-04 
28.0 549 1.19E-02 3.96E-05 1.12E-03 
28.0 577 1.23E-02 4.09E-05 1.40E-03 
28.7 706 3.43E-02 1.14E-04 3.95E-04 
32.0 1301 4.72E-02 1.55E-04 3.16E-04 
33.4 761 2.87E-02 9.36E-05 5.30E-04 
35.0 1137 4.20E-02 1.36E-04 3.40E-04 
36.1 802 2.73E-02 8.82E-05 4.59E-04 
36.3 614 1.54E-02 4.98E-05 9.02E-04 
36.5 474 1.07E-02 3.46E-05 1.52E-03 
36.7 715 2.09E-02 6.76E-05 7.84E-04 
46.3 740 1.71E-02 5.36E-05 9.24E-04 
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Table 4 Diffusion coefficients of pure propane 

Temp. (°°°°C ) Pressure 
(psia) 

Viscosity (cP) Visc./Temp. (cP/K) Log mean D(cm2/sec) 

18.4 124 1.04E-01 3.58E-04 1.77E-04 
20.5 609 1.09E-01 3.71E-04 1.62E-04 
20.6 986 1.14E-01 3.87E-04 1.19E-04 
16.0 1967 1.30E-01 4.50E-04 1.04E-04 
18.4 2988 1.38E-01 4.74E-04 1.10E-04 
19.1 3958 1.47E-01 5.02E-04 1.11E-04 
17.5 5027 1.59E-01 5.46E-04 1.04E-04 
17.5 5943 1.67E-01 5.74E-04 8.56E-05 
28.8 159 9.36E-02 3.10E-04 1.67E-04 
40.0 219 8.30E-02 2.65E-04 2.17E-04 
40.0 2161 1.08E-01 3.45E-04 1.32E-04 
52.6 309 7.22E-02 2.21E-04 2.07E-04 
52.5 5032 1.24E-01 3.80E-04 1.14E-04 
52.5 6053 1.32E-01 4.05E-04 1.22E-04 

 
 

 
Figure 10 T1 dependence on diffusion coefficient 
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Diffusion coefficient dependence on viscosity/temperature was plotted in Figure 
11 3, 9-11. According to the Stokes-Einstein equation, 8 diffusion coefficient D has the 
following relationship with viscosity η and temperature T. 

πση4
kTD =         (5) 

where σ is characteristic length of the intermolecular potential and k is Boltzmann 
constant. 
This relationship is applicable to all of the alkane mixtures and pure alkanes. Diffusion 
coefficients are proportional to T/η, D=5.05×10-8×T/η, where D is expressed in cm 2 /sec, 
viscosity is expressed in cP and T is absolute temperature in K. 3 The literature diffusion 
coefficient data for ethane and propane are also plotted here 9-11. The data from this work 
agree with the literature data. The data of ethane and propane are consistent with the 
Stokes-Einstein equation.  

 
Figure 11 Diffusivity dependence on η/T for pure alkanes 
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observed. The linear relationship between T1 and viscosity/temperature for pure alkanes 
does not hold for ethane and propane. T1 of ethane and propane does not depend linearly 
on the diffusion coefficient. The result for the diffusion coefficient agrees with the 
literature data and is consistent with the Stokes-Einstein equation. 
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Abstract 
 

The relationship between T1,sr and density, temperature and viscosity was 
investigated for methane and ethane. The proton spin rotation interaction constants have 
first been calculated for ethane. The proton relaxation times were calculated and 
compared with the experimental data for ethane. Spin rotation interaction is shown to be 
the main contribution in gaseous ethane. At liquid densities, intra- and intermolecular 
dipole-dipole interactions and spin rotation interaction all have significant contributions. 
The general mixing rule for T1 was proposed and was then tested for CH4-CO2, CH4-N2, 
CH4-He, CH4-Ne and CH4-Ar gas mixtures. 
 
I. Theory for spin relaxation 
 

In general, three interactions, viz. the intra- and intermolecular dipole-dipole 
interactions and the spin rotation interaction contribute to the total relaxation rate for 
most spin ½ nuclei. If these interactions are independent, the total relaxation rate may be 
given by 1, 2 
 

srinterintra
1

1 RRRR
T

++==        (1) 

where Rintra is the relaxation rate by intramolecular dipole-dipole interaction, Rinter is the 
relaxation rate by intermolecular dipole-dipole interaction, and Rsr is the relaxation rate by 
spin rotation interaction. 
The theoretical calculation of different contributions will be briefly discussed in the 
followings. 
 
1.1. Intermolecular dipole-dipole interaction 
 

Dipole-dipole interaction mechanism is caused by the interaction of the magnetic 
dipoles of the nuclei. For the interaction with nuclei in neighboring molecules, it is 
intermolecular dipole-dipole interaction. The relaxation will in general arise from the 
relative translational motion of the molecules. 

McConnell 1 described the molecular motion with a Langevin equation assuming 
that the molecular motion can be described as translational and rotational diffusions and 
then derived the relation for dipole-dipole interaction 
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where I is spin quantum number, ω0 is the Larmor angular frequency, and j(ω) is the 
spectral density.  

The evaluation of the spectral density will depend on whether the dipole-dipole 
interaction is intermolecular or intramolecular, and also on the particular model chosen to 
describe the thermal motion. For intermolecular dipole-dipole interaction, Brownian 
motion model in the extreme narrowing limit gives 1 
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where γ is gyromagnetic ratio, ! is Plank’s constant, n is the number density, ν is the 
number of resonant nuclei in a given molecule, σ is the molecular diameter, and D is 
translational diffusion coefficient. 
 
1.2. Intramolecular dipole-dipole interaction 
 

Intramolecular dipole-dipole interaction mechanism is due to the interaction of 
nuclei in the same molecule. If the molecule is regarded as rigid, the relaxation results 
from the rotational motion of the molecule.  

It is assumed that the autocorrelation function is exponential. If the rotational 
molecular motion can be described by the diffusion equation, Equation (2) in the extreme 
narrowing limit will be expressed as 1 
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where rij is distance between two nuclei in the same molecule, and τθ is molecular 
reorientation correlation time. 

Numerous studies of rotational molecular motion have shown that reorientational 
correlation time can be given by the Stokes-Einstein-Debye equation 4-9 
 

0
1 / τητ θ += TA         (5) 

 
where η is the viscosity, T is the temperature, τ0 is the zero-viscosity intercept, and A1 is 
related to the volume of the rotating particle and the drag that the particle experiences 
from the surrounding fluid. Alm et al.6-7 suggested that the intercept was related to free 
rotation and that it could be described as 
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where k is Boltzmann constant and Iav is given by 
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I , ⊥I  are moments of inertia of the molecule along parallel and perpendicular axes. 
 Substituting Equation (5), Equation (6) and Equation (7) into Equation (4), we 
obtain 
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1.3. Spin rotation interaction 
 

It has been shown that spin rotation relaxation is the dominant mechanism for spin 
½ in a gas. The spin rotation interaction is due to magnetic fields generated at a nucleus 
by the motion of a molecular magnetic moment which arises from the electron 
distribution in a molecule. Molecular collisions cause the magnetic moment to fluctuate. 
This can result in fluctuating magnetic fields which are felt by the nucleus. The 
magnitude of the effect is proportional to the rotational velocity and inversely 
proportional to the moment of inertia. Thus spin rotation interaction will be the strongest 
in small spherical molecules. The Hamiltonian for the interaction of molecular and 
nuclear magnetic moment is 1, 2 
 

JCIhH ⋅⋅−=sr         (9) 
 
where C is the spin rotation coupling tensor, I is the spin angular momentum operator of 
the resonant spin, and J is the molecular rotational angular momentum of the molecule. 
For symmetric top molecules, the spin rotation coupling tensor is a symmetric tensor. 

Theoretical predictions concerning spin rotation interaction can be categorized to 
two cases, the kinetic model for low densities and the diffusion model for high densities. 
The two models differ in the assumed model for the rotation molecular motion. 
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1.3.1. Kinetic model 
 

In dilute gases, T1 can be connected to the thermal average of the binary collision 
cross sections for angular momentum transfer for spin rotation interaction. The kinetic 
model can adequately describe spin rotation interaction in dilute gases. Gordon 10 
developed the kinetic model of spin rotation interaction for the case of linear molecules. 
Then Bloom et al. 12, 13 extended theoretical treatment to spherical and symmetric top 
molecules. The basic assumptions underlying the kinetic model are as follows 
(a) “High frequency” transitions associated with changes in the energy of rigid rotation 
and centrifugal distortion are neglected. 
(b) The rotational Larmor period is much longer than interaction times during which the 
molecules reorient. 
(c) The free molecule correlation functions (in the absence of collisions) are independent 
of time. The effect of molecular collisions is to limit the lifetime of the molecule in any 
state and to cause the free molecule correlation functions to decay to zero exponentially. 
(d) The oscillating terms in the free molecule correlation functions are negligible. 
(e) The rotational angular momentum Jl and the rotation matrix for frame transformation 
D0-l

2 are statistically dependent for the dilute gases. 
For symmetric top molecules with the resonant nuclei on the principal symmetry 

axis (e. g., 13C in ethane), the relaxation time in the extreme narrowing limit may be 
expressed as 
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where J, K are rotational quantum numbers, τJ is the correlation time related with the 
angular momentum operator J , τ12

’ is the correlation time related with the tensor of rank 
one formed by the product of J and the spherical harmonic Y2m(Ω), τ12 is the correlation 
time related with the cross term between J and JY2m, and  
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where C , ⊥C  are spin rotation constants describing the coupling of the nuclear  and 
molecular angular momenta along parallel and perpendicular axes. Armstrong et al. 14, 15 
calculated the rotational averages in Equation (10) using the method of Birnbaum in 
terms of α and y. α and y are defined as  



 

 32

 

kTI ⊥
=

2

2!α          (13) 

2/1

1 









−=

⊥I

I
y         (14) 
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The averages in Equation (10) are inversely proportional to α and α is inversely 

proportional to temperature. It turns out that the averages in Equation (10) are 
proportional to temperature.  

Armstrong et al. 15 investigated the kinetic model for the resonant nuclei off the 
symmetry axis of the symmetric-top molecules (e. g., 1H in ethane). In this case, the C 
tensor is not diagonal and can be expressed by Equation (37) in the molecular frame. The 
complete Hamiltonian for the spin rotation interaction is expressed as 
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with Cxx, Cyy, Czz the diagonal components of the spin rotation tensor. 

Armstrong 15 argued that it was reasonable to neglect the contribution of the last 
two terms to Hamiltonian. Equation (15) and Equation (16) can also be used for the 
resonant nuclei off the symmetry axis of the symmetric-top molecules. However, for the 
resonant nuclei off the symmetry axis, Equation (12) becomes 
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where θ is the angle defined by Equation (38). 

For spherical top molecules, y is equal to 0 and τJ , τ12
’, and τ12 are equal. 

Equation (15) simplifies to 
 

JCCkTI
T

τπ






 ∆+= 22

av2
av

2

sr1, 45
481

!
 (spherical top molecules)  (22) 

 
For linear molecules, only perpendicular component of ⊥C  is nonzero. Thus C 

tensor reduces to a scalar and Gordon’s Kinetic theory 10 gives 
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τJ represents the average time between collisions that cause angular momentum 

transfer and is given by Gordon’s theory 10 as follows 
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where v  is the mean relative velocity (8kT/πµ)1/2, µ is the reduced mass for a collision 
pair of molecules, and σJ is the cross section for transfer of angular momentum by a 
collision. The reduced mass µ is given by 
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where m1 and m2 are the mass of two colliding molecules respectively. 

The cross section σJ (T) is interpreted classically as 10 
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where ∆ J is the change in the rotational angular momentum vector of the molecule by a 
collision and < > denotes the average over the initial distribution of internal states before 
a collision and the initial distribution of relative velocities. If the collision integral is 
temperature independent, the cross section is inversely proportional to temperature. Then 
the angular momentum correlation time τJ is expected to be proportional to T1/2. It is 
assumed that the molecular motion is governed by a single correlation time. Substituting 
Equation (24) and Equation (26) into Equation (15), we obtain 
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and we would expect that T1/n has a T-3/2 temperature dependence for the symmetrical top 
molecules. Apparently, this conclusion is also valid for spherical top and linear 
molecules. 

At dense gases, the assumptions underlying the kinetic model may not be valid. 
We may estimate the main correction at dense gases by analogy with Enskog’s theory of 
transport in dense gases. 11 For nuclear spin relaxation in compressed polyatomic gases, 
the collision frequency effect is important 11. Then the only modification is the 
replacement of n with ng(σ) where g(σ) is Enskog’s correction to the collision frequency. 
The radial distribution function g(σ) can be given by Carnahan-Starling equation 16, 17: 
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where Vb 4/=ξ  for a molar volume V and 3/2 3σπ ANb =  (NA is the Avogadro number). 
In dense fluids, Equation (24) becomes 
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Since g(σ) is independent of temperature, τJ is still proportional to T1/2 at dense 
gases. In general, we would expect 
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in the kinetic model. 34-39  
 
1.3.2. Diffusion model 
 

The binary collision theory may not be useful in treating dense gases or liquids. 
Calculations of T1 in dense fluids have often been based upon the diffusion model which 
describe the rotational motion of molecules with a diffusion equation. 20-24 The diffusion 
process can be regarded as a random walk over points in phase space caused by collisions 
interrupting the free motion of the molecules. The diffusion model is appropriate when 
the angular momentum correlation time is small compared to the mean period of rotation 
of the free rotor. 

The diffusion model for the spin rotation contribution to T1 derived by Wang et al. 
20-24 will be summarized in the next paragraphs. In the liquid, the anisotropic 
intermolecular interactions are large. The restriction (e) in the kinetic model might be 
removed and the assumption of statistical independence may be reasonable for the liquid. 
The correlation functions can be evaluated by a Langevin equation for the molecular 
angular velocity. If the resonant nuclei are on the symmetry axis of symmetrical top 
molecules, the coordinate system chosen for diagonalizing the diffusion tensor will 
simultaneously diagonalize the C tensor. The expression for spin rotation contribution to 
the relaxation time is given as 
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where D , ⊥D  are rotational diffusion constants parallel and perpendicular to the 
symmetry axis. Basically, the angular momentum correlation function is expected to 
decay over a time short to the Larmor period. It is reasonable for us to assume 
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where ωi is the component of the angular velocity along the i-th principal axis, Ii is the 
component of moment of inertia along the i-th principal axis and τJi is the angular 
momentum correlation time along the i-th principal axis and is given by  
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Substituting Equation (33) into Equation (32), we obtain the expression for the 

relaxation time due to spin rotation interaction in the extreme narrowing limit as 
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where Jτ , ⊥Jτ  are angular momentum correlation times along parallel and 
perpendicular axes. 

Equation (35) reduces to 
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in the limit .1,1)( <<<<+ ⊥⊥⊥ JJ DDD ττ  

Equation (35) and (36) may not be applied to the resonant nuclei off the symmetry 
axis (e. g., 1H in ethane). Wang 20 has derived the diffusion model for the spin rotation 
contribution to T1 for the resonant nuclei off the symmetry axis. He first assumes that the 
C-H bond in a molecule such as ethane lies along the z axis with the proton along the z 
axis at which the C tensor for the proton is diagonalized, and he then relocates the proton 
to its final position at the y axis on the x-y plane by rotation about the carbon through an 
angle θ. As a result, the C tensor element for the proton after the transformation is given 
by 
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Wang then obtains the expression for spin rotation contribution to the relaxation 

time 
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which reduces to 
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in the limit .1,1 <<<< ⊥⊥⊥ JJ DD ττ  Note that Equation (40) reduces to Equation (36) for 

θ=0.  
For spherical top molecules, Equation (36) reduces to 
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For linear molecules, T1 may be deduced from Equation (41) by putting C  equal 

to 0. That is 
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From hydrodynamics theory, 53, 54 the angular momentum correlation time may be 

related to viscosity η as following 
 

κ
ηπ
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where a is the molecular radius and κ is the correction factor for slip boundary conditions 
compared with stick boundary conditions 18, 19. In general, the theoretical prediction using 
slip boundary conditions may agree well with the experimental measurement for small 
molecular fluids.  
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From substitution of Equation (43) into Equation (40), we obtain 
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It is to be expected that  
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T η∝sr1,          (45) 

 
if the diffusion model is appropriate.  

Table 1 summarizes the results for spherical top molecules and linear molecules 
by two models. Note that for spherical top molecules the coefficient for “∆C2” term given 
by the kinetic model differs from that given by the diffusion model by a factor of 2/5. 
Bloom’s explanation 12 is that a factor of 1/5 is accounted for by dropping of the 
oscillating contribution to correlation functions and that the remaining factor of 2 is due 
to the fact that Jl and D0-l

2 are statistically dependent for the gases. It might be noted that 
both models lead to the same result in the limit of linear molecules. In the diffusion 
model, Equation (42) can be obtained from Equation (41). However, we cannot derive 
Equation (23) directly from Equation (22). 
 

Table 1 Relaxation times by spin rotation interaction 
 Kinetic model Diffusion model 
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II. Mixing rule for T1 
 

A mixing rule is developed for T1 in the binary mixture with components A and B. 
The resonant nuclei may be 1H or 13C. For A-B mixtures, there may be two contributions 
to T1, one from resonant nuclei of A and the other from resonant nuclei of B. The log 
mean T1 may be described as 
 

)()()( B1,BA1,Alogmean,1 TLogFTLogFTLog +=      (46) 
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where FA is the resonant nucleus fraction of A, FB is the resonant nucleus fraction of B, 
and T1,A and T1,B are the individual relaxation times of A and B in the mixture. In general, 
relaxation times of A and B can be given by Equation (1). 

The intermolecular dipole-dipole relaxation rate can be given by Equation (3). In 
the A-B mixture, ν can be calculated as 
 

BBAA xx ννν +=         (47) 
 
where xA, xB are the mole fractions of A and B in the mixture respectively and νA, νB are 
the number of  resonant nuclei in A and B respectively. The molecular weight MW of the 
mixture can be calculated as 
 

BBAA xMWxMWMW +=        (48) 
  
where MWA, MWB are the molecular weight of A and B respectively. 

The intramolecular dipole-dipole interaction relaxation time can be given by 
Equation (4). The medium effect may be included in the viscosity term. 

It is assumed that the relaxation of both A and B in the mixture may be described 
by the kinetic model. The relaxation by the spin rotation mechanism for A is caused by A-
A collisions and by A-B collisions. It has been theoretically 10 and empirically 33 

established that these effects are additive.  
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where ρ, ρA, and ρB are the mass density. 

Similar arguments can be made about the relaxation time of B and we obtain 
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For the diffusion model of spin rotation interaction, the medium effect may be 

included in the viscosity term. 
 
III. Applications of theory 
 
3.1. Pure components 
 
3.1.1. Proton spin rotation interaction in methane 
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Proton NMR relaxation times for methane have been measured by Gerritsma et al. 
25-27. The contribution of spin rotational interaction was extracted from proton T1 data by 
assuming that gaseous methane relaxes only by spin rotation interaction. We analyzed 
proton T1, sr data using both the kinetic model and the diffusion model. 

The molecular constants of methane are presented in Table 2. 
 

Table 2 Molecular constants of methane 
 value reference 
Moments of inertia (g.cm2) IA=IB=IC=5.33*10-40 28 
1H spin rotation constants 
(kHz) 

Cav=10.4; C∆ =18.5 29 

13C spin rotation constants 
(kHz) 

Cav=15.94; C∆ =0 33 

Molecular diameter (10-10 m) 3.83 3 
 

The numerical evaluation of Equation (22) and Equation (41) using the values in 
Table 2 for methane yields 
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JT
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10624.9)H(1 ×=  (C1, dm, cgs)     (52) 

 
In this report, km represents the kinetic model, dm represents the diffusion model, 

and cgs represents cgs units. τJ in the kinetic model can be evaluated by Equation (24). σJ 
is available for methane in the literature and is listed in Table 4. So it is possible to 
predict the contribution of spin rotation interaction in methane by theoretical equations. 

Figure 1 shows T1,sr/(ρg(σ)) vs. T plot for methane based on the kinetic model. 25 
T1,sr is expressed in sec, ρ is expressed in g/cm3, and T is expressed in K. The theoretical 
prediction by the kinetic model compares well with experimental data. A plot of T1,sr vs. 
viscosity/temperature based on the diffusion model is shown in Figure 2. 25 It seems that 
the diffusion model fails to describe spin rotation interaction in methane. The kinetic 
model is a better model for describing spin rotation interaction in methane. 
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Proton relaxation by spin rotation interaction in methane
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Figure 1 Proton T1, sr /(ρg(σ)) vs. T plot in methane based on the kinetic model 
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Figure 2 Proton T1, sr vs. η/T plot in methane based on the diffusion model 
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3.1.2. 1H and 13C spin rotation interaction in ethane 
 

Proton NMR T1 for ethane has been measured in the temperature range from 20 to 
46 °C. The contribution of spin rotation interaction was extracted from proton T1 data by 
assuming that gaseous ethane relaxes only by spin rotation interaction. Whittenburg et al. 
40 measured the 13C NMR T1 for ethane in the temperature range from 172 to 323 K. The 
contribution of spin rotation interaction was extracted from 13C T1 data based on NOE 
measurements. So it is possible to analyze 1H and 13C T1, sr data in ethane using both the 
kinetic model and the diffusion model. 

The spin rotation constants for the proton in ethane have not been reported. 
However, they can be estimated from the average paramagnetic shielding, σp’ of the 
proton 49-52. We may calculate the spin rotational constants from the well-known 
relationship between the shielding and the spin rotational constants. 49, 51 
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In this expression, g is the nuclear g factor, mp and me are the mass of the proton 

and electron respectively, and σd’ represents the atomic diamagnetic shielding, taken to 
be a constant 17.77 ppm. 50 for the proton. We then make use of the equations 
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With σp’ = 12.2 ppm and ∆σ = 2.02 ppm for ethane, 48 we obtain values for σ  and ⊥σ . 
Now by equating Equation (53) and Equation (54), we obtain 
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and therefore 
 

⊥⊥⊥ ××= IC361023.63σ        (57) 
 
and 
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from which we obtain kHz46.1=⊥C  and kHz95.6=C . 
The molecular constants of ethane are summarized in Table 3. 

 
Table 3 Molecular constants of ethane 

 value reference 
Moments of inertia (g.cm2) IA=1.04*10-39, IB=IC= 4.23*10-

39 
45, 47 

1H spin rotation constants 
(kHz) 

C =6.95; ⊥C =1.46 this work 

13C spin rotation constants 
(kHz) 

C =13; ⊥C =2.2 40 

The angle of C-C-H 111.5° 45, 46, 47 
The distance between protons 
(10-10 m) 

r01 =r02 =1.77; 
r03 =r04 =2.55; r05 =3.10 

45, 46, 47 

Molecular diameter (10-10 m) 4.38 3 
 
The numerical evaluation of theoretical equations using the values in Table 3 for 

ethane yields 
 

JT
T

τ81

sr,1

10836.3)H(1 ×=  (C2, km, cgs)     (59) 

 

[ ]⊥⊥ ×++×+×= JJJ DT
T

τττ 8771

sr,1

10707.1)/1(10018.910255.9)H(1

 (C2, dm, cgs)         (60) 
 

JT
T

τ913

sr,1

10694.2)C(1 ×=  (C2, km, cgs)     (61) 

 

( )⊥×+×= JJT
T

ττ 8813

sr,1

10344.110853.5)C(1  (C2, dm, cgs)  (62) 

 
The theoretical equations in the diffusion model can predict the linear dependence 

of T1,sr on viscosity/temperature. However, the analysis of NMR data indicates that T1,sr 
predicted by theoretical equations is almost always bigger than the experimental result. 
The lack of knowledge of some parameters in interpretation of τJ by both models causes 
the difficulty in theoretical prediction of spin rotation interaction in ethane. Alternatively, 
we draw a straight line with the slope predicted by the models on the log-log plots to 
investigate the dependence of T1, sr on density and viscosity. Figure 3 shows T1,sr/(ρg(σ)) 
vs. T plots for ethane. 40 The plots of T1,sr vs. viscosity/temperature are shown in Figure 4. 



 

 44

40 It is apparent that 13C and 1H T1, sr in ethane does not follow the power law relationship. 
The kinetic model does not work well for spin rotation interaction in ethane. Both 1H and 
13C T1,sr data show that the diffusion model is a better model for ethane. Spin rotation 
interaction in ethane is better explained by the diffusion model while spin rotation 
interaction in methane is better described by the kinetic model.  
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Proton T1 by spin rotation relaxation in ethane
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(a) 1H data 
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Figure 3 T1, sr /(ρg(σ)) vs. T plots in ethane based on the kinetic model 
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 Proton T1 by spin rotation interaction in ethane 
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(a) 1H data 

13C T1  by spin rotation interaction in pure ethane
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(b) 13C data 

Figure 4 T1, sr vs. η/T plots in ethane based on the diffusion model 
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3.1.3. Proton relaxation in pure ethane 
 

For pure ethane, the total proton relaxation rate is accounted for by three 
interactions, i. e., the intra- and intermolecular dipole-dipole interactions and the spin 
rotation interaction. The total relaxation rate can be given by Equation (1). 
 
3.1.3.1.  Intermolecular dipole-dipole interaction 
 

In order to use Equation (3) to predict relaxation rate for ethane, we need to make 
two additional modifications. 

Firstly, the effect of the radial distribution function is taken into account. The 
following equation for intermolecular dipole-dipole interaction in ethane is obtained 41, 43 
 












Ω′+






 Ω′+++== 0521.00672.0
12
51

15
)1(81

2

224

inter
inter1, σσ

νγπ r

D
IInR

T
!  (63) 

 
where <r2> is the root mean square distance of the random flight, and Ω′  is as following  
 

3

3
4 σπn=Ω′          (64) 

 
For polyatomic molecules, such as ethane, a further effect must be considered. If 

the spins are not at the center of the molecule, the distance of closest approach of two 
spins will no longer be σ. In addition, the effect of rotation of the spin-bearing molecules 
on the purely translational relaxation should be considered. It turns out that these effects 
compete, the former tending to increase the relaxation rate, the latter decreasing it. Muller 
et al. extended Hubbard’s treatment to ethane and derived the following equation for the 
relaxation time by intermolecular dipole-dipole interaction 41, 43 
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σ
β

σ
α dd     (65) 

 
where d is the distance of protons from the center of the molecule and α ′  and β ′  are 
factors taken from Ref. 42. 

The result predicted by Equation (65) with two correction terms is in good 
agreement with Harmon’s liquid ethane data. 41  

The numerical evaluation of Equation (65) gives 
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






 Ω′+





 Ω′++×= − 0521.00672.0
12
5110146.21 6

inter1, DT
ρ  (cgs)  (66) 

 
3.1.3.2.  Intramolecular dipole-dipole interaction 
 

In contrast to the exponential autocorrelation function assumption, Moniz et al. 44 
used Gaussian approximation to evaluate the autocorrelation function and then the 
contribution of intramolecular dipole-dipole interaction to the relaxation rate can be 
written as 
 

2/15

1

av6
24

intra
intra,1 34

31 ∑
=

− 





==

j
ij kT

IrR
T

πγ !      (67) 

 
Harmon 41 has shown that Equation (67) can give good prediction for 

intramolecular dipole-dipole interaction in ethane at temperatures higher than 290K.  
The numerical evaluation of Equation (67) gives 

 

2/1
intra,1

125.01
TT

=   (cgs)       (68) 

 
3.1.3.3.  Spin rotation interaction 
 

The validity of the diffusion model for spin rotation interaction in ethane has been 
established. T1 by spin rotation interaction can be found in the form of 
 

2

1sr1,

C

T
CT 






= η         (69) 

 
where C1 and C2 can be found by fitting pure ethane T1 data if we assume that vapor 
ethane relaxes only by spin rotation interaction. Figure 5 is the plot.  Therefore, T1, sr of 
ethane is estimated by  
 

74.0
4

sr,1 1040.1 





×=

T
T η  (cgs)      (70) 

 
The experimental data 55 of ethane proton relaxation times were compared with 

the relaxation times of ethane calculated from Equation (1), Equation (66), Equation (68) 
and Equation (70). The result was shown in Figure 6. The estimation compares closely 
with experimental results for proton relaxation in ethane.  
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Figure 5 Correlation of spin rotation T1, viscosity and temperature for vapor ethane 

 

 
Figure 6 Comparison of experimental results and calculated results for pure ethane 
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The results of the analysis of our ethane T1 data were presented in Figure 7. In the 
gaseous ethane, the contribution of intermolecular dipole-dipole interaction is less than 
0.5% and can be negligible. The relaxation rate is mainly accounted for by intramolecular 
interactions. In particular, spin rotation interaction is the dominant mechanism in gaseous 
ethane. However, the all three contributions become significant for liquid ethane with 
increasing viscosity. For liquid ethane at cryogenic temperatures, intermolecular dipole-
dipole interaction becomes the dominant relaxation mechanism. 

 
Proton relaxation in ethane
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Figure 7 Contributions to the proton relaxation rate of ethane  

 
3.2. Mixtures 
 
3.2.1. Proton relaxation in CH4 gas mixtures 
 

The mixing rule is tested for five CH4 gas mixtures, including CH4-CO2, CH4-N2, 
CH4-He, CH4-Ne and CH4-Ar gas mixtures 30-32. In these gas mixtures, only methane 
contributes to proton relaxation times of the mixtures. The other components contain no 
protons and are “invisible” in proton NMR relaxation. Previous work indicates that 
methane molecular motion is still in the gas kinetic limit even at liquid densities. 26 It is 
reasonable to use the kinetic model to predict proton relaxation in methane. It is assumed 
that spin rotation interaction is the dominant mechanism for gaseous methane. The 
contribution by dipole-dipole interactions is neglected.  
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In order to calculate T1 of CH4 mixtures using Equation (49) and Equation (51), 
we need the knowledge of cross sections for angular momentum transfer for CH4 
molecules with various collision partners. In general, the collision cross section for 
angular momentum transfer can be reasonably represented by a function of the form 30-33 
 

m

JJ
TK 






=

300
)300(σσ        (71) 

 
The cross sections for the collisions of CH4 with CH4, CO2, N2, He, Ne and Ar were 
listed in Table 4. In particular, cross sections for angular momentum transfer for CH4-He 
and CH4-Ne pairs are estimated by fitting the data from NMR measurements 32 in the 
form of Equation (71). Figure 8 and Figure 9 are the plots. 

 

 
Figure 8 Correlation of cross section for angular momentum transfer by collisions for CH4-He 
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Figure 9 Correlation of cross section for angular momentum transfer by collisions for CH4-Ne 

 
Table 4 Cross section for angular momentum transfer for CH4 molecules with 

various collision partners 
pair σJ (T), 10-20 m2 reference 

CH4-CH4 18.4(T/300)-0.90 33 
CH4-CO2  24.1(T/300)-0.98 33 
CH4-N2 16.3(T/300)-0.87 33 
CH4-He 4.48(T/300)+0.27 this work 
CH4-Ne 10.1(T/300)-0.55 this work 
CH4-Ar 14.4(T/300)-0.79 33 

 
Using the data from Table 4, we estimated relaxation times of five CH4 gas 

mixtures by the mixing rule. Figure 10-14 compared the estimated results with 
experimental results 30, 32 for CH4-CO2, CH4-N2 and CH4-He, CH4-Ne and CH4-Ar gas 
mixtures respectively. The estimations from the mixing rule compare quite closely with 
experimental results. 
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Figure 10 Comparison of experimental results and calculated results for CH4-CO2 
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Figure 11 Comparison of experimental results and calculated results for CH4-N2 
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Figure 12 Comparison of experimental results and calculated results for CH4-He 
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Figure 13 Comparison of experimental results and calculated results for CH4-Ne 
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Figure 14 Comparison of experimental results and calculated results for CH4-Ar 

 
3.2.2. Proton relaxation in CH4-C2H6 gas mixtures 
 

In CH4 (A)-C2H6 (B) gas mixtures, there are two contributions to proton T1, one 
from protons of methane and the other from protons of ethane. The log mean T1 may be 
described by Equation (46). It is assumed that the spin rotation interaction is the dominant 
interaction for both methane and ethane in the dilute gas mixtures. It has been established 
that the relaxation of methane can be described by the kinetic model while the relaxation 
of ethane can be described by the diffusion model. The relaxation by the spin rotation 
mechanism for methane may be given by Equation (49) and Equation (51). The relaxation 
by the spin rotation mechanism for ethane may be calculated by Equation (70).  

The cross section for angular momentum transfer for the collisions between 
methane molecules and ethane molecules is not available. Currently, it is difficult to 
apply the mixing rule to CH4-C2H6 mixtures. However, the collision cross section for 
angular momentum transfer can be estimated from NMR T1 data of the mixtures. It is 
expected that NMR relaxation times will be measured for CH4-C2H6 gas mixtures by this 
lab. Then the mixing rule can be tested for CH4-C2H6 gas mixtures. 
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IV. Conclusions 
 
The theory about relaxation mechanisms in gases and liquids was summarized. It 

was found that T1,sr/n has a T-3/2 temperature dependence in the kinetic model while T1,sr is 
proportional to T/η  in the diffusion model. The proton spin rotation interaction 
constants were calculated for ethane. and the results were kHz46.1=⊥C  and 

kHz95.6=C . Spin rotation interaction in methane is better described by the kinetic 
model while spin rotation interaction in ethane is better explained by the diffusion model. 
The estimation based on Equation (1), Equation (66), Equation (68) and Equation (70) 
compares closely with experimental results for proton relaxation in ethane. Spin rotation 
interaction is shown to be the main contribution in gaseous ethane. At liquid densities, 
intra- and intermolecular dipole-dipole interactions and spin rotation interaction all have 
significant contributions. The general mixing rule for T1 was proposed. The estimations 
by the mixing rule agree well with experimental results for CH4-CO2, CH4-N2, CH4-He, 
CH4-Ne and CH4-Ar gas mixtures. 
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Relaxation Time and Diffusivity of Hydrocarbon Mixtures 
G. J. Hirasaki and S.-W. Lo 

 

Abstract 
 The relation between the relaxation time and diffusivity distributions of 
hydrocarbon mixtures is examined.  The system investigated is mixtures of n-hexane and 
squalene, a 30-carbon hydrocarbon.  The results verify the assumption made in the 
“constituent viscosity model.” 

 

Introduction 
 Interpretation of NMR well logs are often complicated by relaxation time 
distributions of hydrocarbons which overlap the relaxation time distribution of the water.  
The water has a distribution of relaxation times because of the surface relaxation by the 
pore walls.  Several methods have been introduced to distinguish between the oil and 
water [Akkurt (1999), Looyestijn (1996), and Slijkerman, et al. (1999)].  These methods 
rely on the magnetic field gradient of the logging tool and the difference in diffusivity 
(diffusion coefficient) between the oil and water.  Freedman, et al. (2000) introduced the 
constituent viscosity model (CVM) to distinguish the oil and water.  “In the CVM, each 
hydrocarbon molecule in the mixture is assumed to relax and diffuse like it would in the 
pure-state liquid except the macroscopic pure-state viscosity is replaced by the 
microscopic constituent viscosity.”  This implies that the relaxation time distribution and 
diffusivity distribution are coupled through a common “constituent viscosity.”  The 
expressions for the mixture and the constituent relaxation time, diffusivity, and viscosity 
are as follows. 
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The parameter, kf , is the proton fraction the k-th molecular constituent.  The parameters, 
anda b , were determined from measurements of the relaxation time and diffusivity of 

pure components and mean value of mixtures.  The ratio of /b a is equal to 5.28×10-6 
(cm2/s2) for alkanes and 1.26×10-5 (cm2/s2) for crude oils.  This model assumes that 
relaxation time and diffusivity distributions are coupled with each constituent having a 
common proportionality constant, /b a . 
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 The relation between the relaxation rate and viscosity of n-hexane and n-
hexadecane mixtures was the subject of investigation by Zega, et al. (1990).  They found 
the mole fraction weight-average relaxation rate to be proportional to the viscosity as in 
pure fluids.  The proton fraction average relaxation rate was not exactly proportional.  Lo, 
et al. (2000) found that the individual-component relaxation times of n-hexane and n-
hexadecane were quite different but the proton fraction weighted geometric mean 
relaxation time was a good approximation to the relaxation time – viscosity relation for 
pure alkanes.  The diffusivity distribution of n-hexane and n-hexadecane mixtures 
overlapped too much determine if the diffusivity distribution corresponded to the 
relaxation time distribution.  Freedman, et al. (2000) used mixtures of n-hexane (C6H14) 
and squalene (C30H50) to demonstrate the relation between the relaxation time and 
diffusivity distributions for this mixture.  Publication space limitations did not permit 
detail discussion of those results so they are presented here. 

Materials and Experimental Methods 
 The n-hexane and squalene were deoxygenated freezing, applying vacuum and 
thawing under nitrogen.  The NMR measurements were made on a 2 MHz MARAN-2 
spectrometer.  T2 was measured by the Carr-Purcell-Meiboom-Gill (CPMG) method and 
the diffusivity was measured by the pulsed field gradient (PFG) method.  Mixtures of n-
hexane and squalene were prepared with hexane proton fraction, H(C6), equal to 0.38, 
0.50, and 0.69. 

Results and Discussion 
 The relaxation time and diffusivity distributions are shown in Figs. 1 and 2, 
respectively, and summarized in Table 1.  The values in the tables are the bi-exponential 
fit results.  The light vertical line on each plot is the relaxation time estimated by fitting 
the CPMG response to a bi-exponential model.  H(C6) is the proton fraction of hexane in 
the mixture.  A(C6) is the fraction of the area attributed to hexane.  There is good 
agreement between H(C6) and A(C6).  The peaks of the diffusivity distributions are 
broader that those for the T2 distributions.  This can be explained by the difference in 
signal/noise for the two measurements.  The T2 is determined from 8,000 echoes of the 
CPMG method while the diffusivity is determined from 58 different gradient pulse time 
intervals.  Fig. 3 are plots of the constituent relaxation time and diffusivity, respectively.  
There is about an order of magnitude change in the relaxation time and diffusivity of 
squalene.  The change for n-hexane is less.  Fig. 4 is a plot of the ratio of 
diffusivity/relaxation time for squalene and n-hexane.  The dashed line is the ratio, /b a , 
determined for pure and mixtures of alkanes.  The average absolute deviation of the ratio, 
D/T2 from the independently determined value of /b a  is 27%.  It is clear that the 
deviation could be reduced if /b a  was determined specifically for the n-hexane and 
squalene mixture.  Fig. 5 is the correlation between the pure and constituent diffusivity 
and relaxation time for the n-hexane and squalene systems.  The measured points 
compare well with the correlation that was independently developed from pure alkanes 
and mixture of alkanes. 

Conclusions 
 The measurements of relaxation time and diffusivity for the pure materials and 
mixtures of n-hexane and squalene verify the coupling between the relaxation time and 
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diffusivity of constituents in a mixture.  The area fractions in the distributions correspond 
to the proton fraction of the corresponding constituent. 
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Nomenclature 
a  parameter in relaxation time - viscosity correlation, s⋅cp/K 
A(C6) area fraction attributed to hexane 
b  parameter in diffusivity – viscosity correlation, cm2⋅cp/(K⋅s) 
D diffusivity, cm2/s 
f proton fraction of component k 
H(C6) proton fraction of hexane 
T temperature, K 
η  viscosity, cp 

 

Table 1 Relaxation time and diffusivity of n-hexane and squalene mixtures 

H(C6) T2(C6), s T2(C30), s D(C6), cm2/s D(C30), cm2/s 

0.00  0.294  1.01E-06 

0.38 4.59 0.90 1.27E-05 3.47E-06 

0.50 5.75 1.18 1.70E-05 4.94E-06 

0.69 7.52 1.69 3.02E-05 9.89E-06 

1.00 9.78  4.60E-05  
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Relaxation Time Distribution of Asphaltenic Oils 
G.J. Hirasaki, K. McCann, A. Vinegar, and Y. Zhang 

 
ABSTRACT 
 Heavy and moderate gravity oils have a relaxation time distribution that overlaps 
with that of the capillary bound water.  The ratio of the log mean T1/T2 is a function of the 
oil viscosity and asphaltene content and the Larmor frequency of the NMR spectrometer.  

 

INTRODUCTION 
 Morris, et al. (1997) showed that the T2 relaxation time distribution of crude oils 
can have a significant overlap with that of the capillary bound water (e.g. below 33 ms) 
for crude oils with a viscosity even under 10 cp.  In addition, they showed that oils with 
viscosity greater than 800 cp had the entire relaxation time distribution in the region of 
capillary bound water. 

 Vinegar, et al. (1991) measured the T1 of a number of crude oils with a 80 MHz 
NMR spectrometer and found that the log mean T1 had a minimum value of about 100 ms 
for crude oil with viscosity greater than about 100cp.  LaTorraca et al. (1998,1999) 
measured both T1 and T2 of viscous oil with a 2 MHz NMR spectrometer and found the 
two measurements had significant deviation above a viscosity of about 1,000 cp. 

 The T1 and T2 relaxation times for a number of crude oils and pure hydrocarbons 
are plotted as a function of viscosity and Larmor frequency (ωo) in Fig. 1.  The 
correlation of Morris, et al. (1997) is shown as the straight line.  The pure alkanes differ 
from the low viscosity crude oils.  However, if the alkanes remain saturated with air, the 
relaxation times of the alkanes reduce to values that are consistent with that of the light 
crude oils, Fig. 2.  The interesting aspect of Fig. 1 is the difference between T1 and T2 for 
the viscous oils and the frequency dependence of this difference.   

Relaxation Time Distributions 
 The T1 and T2 distributions of a number of crude oils were measured at 30°C with 
a 2 MHz NMR spectrometer.  The T2 was measured with TE=0.24 ms. Fig. 3-6 are 
representative relaxation time distributions of crude oils of decreasing API gravity.  The 
T1 and T2 distributions of a 39° API gravity oil overlay each other and the distributions 
are symmetrical.  A crude oil with 29° API gravity has a distribution that is skewed to 
short relaxation times and the T2 distribution is slightly shorter than the T1 distribution.  
The 19° API gravity crude oil has a T2 distribution has a range of relaxation time that is 
clearly shorter than the T1 distribution.  The M14 oil was so viscous that the density and 
viscosity were not measured.  The T1 and T2 distributions of this oil have separated. 

Correlation of T1/T2 
 Our data was combined with that of LaTorraca, et al. and the ratio of the log mean 
T1 and T2 was correlated. The correlation shown in Fig. 7 has a correlation coefficient of 
0.96.  The ratio of the peaks of the distributions correlated with the asphaltene content is 
shown in Fig. 8.  These latter two correlations are for NMR measurements at a ωo of 2 
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MHz.  Vinegar, et al. only measured the T1 relaxation time at a ωo of 80 MHz.  However, 
if we assume that the T2 is independent of ωo then the ratio T1/T2, is dependent on both 
the viscosity and ωo. 

 The viscosity and frequency dependence of the ratio, T1/T2, may be due to the 
relationship between the correlation time of molecular motions, cτ , and oω , Cowan 
(1997).  In the limit of fast motions as in the case of low viscosity fluids, 1c oτ ω !  and 
T1 and T2 are equal.  When the molecular motions are slow as in high viscosity fluids or 
in macromolecules and/or the Larmor frequency is high, then 1c oτ ω "  and T1 will 
increase with increase in cτ  while T2 will decrease.  The T1 data of Vinegar, et al. reaches 
a plateau with viscosity greater than about 100 cp.  This may be because crude oils are 
mixtures of many components and have a distribution of correlation times. 

CONCLUSIONS 
 Light oils have identical T1 and T2 relaxation time distributions.  However, heavy 
or asphaltic crude oils have different T1 and T2 distribution with the ratio increasing with 
increasing viscosity, asphaltene content, and Larmor frequency. 
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Fig. 1. T1 and T2 relaxation times as a function of viscosity and frequency. 
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Fig. 4. Relaxation time distributions of a moderate gravity oil. 
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Fig. 6. Relaxation time distributions of a very heavy oil. 
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Task 2.0  Fluid-Rock Interactions   
 

Study of slow diffusion in NMR relaxation of water in porous media 
 

Jiansheng Chen 

 

Abstract 
In this paper, the Brownstein-Tarr theory is used to illustrate quantitatively the 

effects of slow diffusion in NMR relaxation of water in porous media. In the fast-
diffusion region, the molecules diffuse so fast that the magnetization density remains 
uniform in the whole space of each single-pore and there is only one characteristic 
relaxation time for this pore. But in the slow-diffusion region, there exist several 
relaxation times for a single-pore, and calculation show that the sum of the relative 
intensities corresponding to the higher order ( 1>n ) relaxation times is about 17%, 25% 
and 32% for slab, cylinder and sphere geometry, respectively. When we consider the bulk 
relaxation in calculating the relaxation times, T2 depends on another dimensionless group 

)/( 2BTa ⋅ρ . When )/( 2BTa ⋅ρ is large, T2  is equal to T2B independent of the value of 
ρa/D. 

 

 Introduction  
The relaxation time of water in porous media is much shorter than that of bulk 

water due to surface relaxation. According to K. R. Brownstein and C. E. Tarr(1,2), the 
magnetization decay of fluid in a single-pore can be described as a diffusion process 
characterized by the pore size parameter a ( a is half the length between two slabs in the 
case of slab geometry and the radius in the case of cylinder and sphere geometry), surface 
relaxivity ρ and the self-diffusivity of the fluid D, the total magnetization M(t) for a 
sample of volume V of water and surface S can be expressed as (1): 
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Where ),( tXm  is the magnetization density and X is the z  direction perpendicular to the 
surface (for slab) or the radial direction r (for cylinder and sphere). nT  are the relaxation 
times and nI  are the relative intensities. 

For slab geometry: 
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For spherical geometry: 
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The above results are given in reference (1) and are based on the assumption of constant 
surface relaxivity ρ and self-diffusivity D and without bulk relaxation. If we consider the 
bulk relaxation rate Br , then the relaxation times become(3) 
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In equation (2) to (9), nλ  are the eigenvalues such that (1) 

  for slab geometry                                    
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  for spherical geometry                              
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K. R. Brownstein and C. E. Tarr (1) showed that there exists three regions which depend 
on the dimensionless group ρa/D: 

  (a). fast-diffusion region:                     ρa/D << 1. 

  (b). intermediate-diffuison region:       1 < ρa/D < 10 

  (c). slow-diffusion region:                    ρa/D >> 10 



 

 75

 Low field NMR is a powerful and noninvasive technique in determining reservoir 
properties such as porosity, permeability, irreducible water saturation and pore size 
distribution. In the connection of relaxation time distribution with pore size distribution, 
it is usually assumed that it is in the fast-diffusion region, then for simple geometry, 

a
dr

V
Sr

T BB
2,1

2,1
2,1

1 ρ
ρ +=+=                                        (13) 

Where d =1, 2, 3 for slab, cylindrical and spherical geometry, respectively. For spin-spin 
relaxation time 2T , here it is assumed that field gradient and fluid diffusion effects are       
negligible. The same method can be used to determine the emulsion drop size distribution 
if the fast diffusion assumption holds. However, because of the diversity of the porous 
media with respect to surface relaxivity and pore dimensions, there are cases where we 
are in the slow-diffusion region or intermediate-diffusion region. The purpose of this 
paper is to see quantitatively the effects of slow diffusion using the Brownstein-tarr 
theory as illustrated above. 

T1, T2 relaxation time distribution in slow diffusion region 
Since the theoretical analysis in the introduction part applies to both T1 and T2, 

here we only discuss T2 and similar results apply to T1. 

There exists T2 relaxation time distribution for a rock sample because of pore size 
distribution even if each of the single-pore is in the fast-diffusion region. Similarly, for a 
single pore in the slow-diffusion region, there exists T2 relaxation time distribution as 
shown in Figure 1 (a) and (b). In this case, the sum of the relative intensities 
corresponding to the higher order relaxation is about 17%, 25% and 32% for slab, 
cylinder and sphere geometry, respectively (Figure 2), so we can not use equation (13) to 
determined the pore size distribution.  

Shown in Figure 3 (a), (b) and (c) is the Log Mean T2 versus surface relaxivity, 
pore radius and fluid diffusivity, respectively. We can see that for small surface relaxivity 
(Figure 3 (a)), large pore radius (Figure 3 (b)) or small fluid diffusivity (Figure 3(c)), Log 
Mean T2 is dominated by bulk relaxation time T2B. Log Mean T2 goes to a constant value 
when surface relaxivity becomes very large at fixed pore radius and fluid diffusivity 
(Figure 3 (a)) or when fluid diffusivity becomes very large at fixed surface relaxivity and 
pore radius (Figure 3 (c)). The Log Mean T2 relaxation time is calculated by 

))ln(exp( 2
1

2 n

m

n
nLM TIT ⋅= ∑

=

                                    (18) 

Where In is the same as in equation (1), m is the number of terms we need to consider 
which depends on ρa/D. The larger ρa/D, the more terms are needed. 

 We can make Log Mean T2 dimensionless by multiplying 
BTV

S
2

1( +ρ ), after 

some calculations, we can get, 
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)ln(exp( 2
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2
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,2
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T
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IT
n

B

B
m

n
nDLM

ρ
λ

ρ

ρ

+

+
⋅= ∑

=
                                         (19) 

Where T2B is the bulk fluid relaxation time, the meaning of other parameters is the same 
as before. We found out that when we consider the bulk relaxation in calculating the 
decay times, the dimensionless Log mean T2 depends on another dimensionless 
group )/( 2BTa ⋅ρ  which is the ratio of bulk relaxation rate to surface relaxation rate.  

Figure 4 and 5 shows the dimensionless Log Mean T2 versus ρa/D and 
)/( 2BTa ⋅ρ , respectively. Figure 6 is the corresponding contour plot. From Figure 4, 5 

and 6 we can see that for each geometry, when )/( 2BTa ⋅ρ is large, which means that bulk 
relaxation dominates, the dimensionless Log Mean T2 is equal to unity independent of the 
value of ρa/D. When )/( 2BTa ⋅ρ is small, the dimensionless Log Mean T2 increases with 
ρa/D, which means that the higher order relaxation times become more and more 
important in calculating the dimensionless Log Mean T2. In Figure 6, there exist four 
regions in which different relaxation mechanism (bulk relaxation, diffusion and surface 
relaxation) dominates in different region. Detailed explanation is shown below the plot.  

Conclusions 
1. In the slow-diffusion region (ρa/D >> 10), there exists T1, T2 relaxation time 

distribution for a single-pore, the sum of the relative intensities corresponding to 
the higher order relaxation times is about 17%, 25% and 32% for slab, cylinder 
and sphere geometry, respectively. 

2. When we consider the bulk relaxation in calculating the decay times, the 
dimensionless Log mean T2 depends on another dimensionless group )/( 2BTa ⋅ρ . 
When )/( 2BTa ⋅ρ is large, the dimensionless Log Mean T2 is equal to unity 
independent of the value of ρa/D. 
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by diffusion,” J. Magn. Reson. 26(17), 1977. 

2. K. R. Brownstein and C. E. Tarr, “Importance of classic diffusion in NMR studies 
of water in biological cells,” Physical Review A, 19 (6), 1979. 

3. David J. Wilkinson, David Linton Johnson, and Lawrence M. Schwartz, “Nuclear 
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4. Tee-Lin Chuah. “Estimation of relaxation time distribution for NMR CPMG 
measurements”. MS Thesis, Rice University, 1996. 
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Figure 1 (a). T2 relaxation time distribution
calculated from analytical solution for a singe-
pore in the slow-diffusion region  (ρa/D = 50),
the perpendicular line corresponds to Log Mean
T2 value calculated by equation (18). 
   a = 0.3mm; ρ = 416.7 µm/sec; 
   D = 2.5×10-5 cm2/sec; T2B = 2.5sec. 
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Figure 1(b) T2 relaxation time distribution calculated by a non-negative non-linear least
square inversion method developed in our laboratory (4) for a single spherical pore in the
slow-diffusion region (ρa/D=60). Noise 0.00105%, Log Mean T2 = 1.911s and T2 median
=2.342s. a = 0.3mm; D = 2.5×10-5 cm2/sec; ρ = 500 µm/sec; T2B=2.5sec. 

 
Figure 2. Sum of higher order relative intensities versus ρa/D 
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(a) (b) 

(c) 

 
 
 
 
Figure 3. Log Mean T2 versus surface relaxivity
(a), pore radius (b) and diffusivity (c). The solid
line corresponds to bulk relaxation time of water.
T2B = 2.5sec. 
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Figure 4. Dimensionless Log Mean T2
versus ρa/D. (a), (b), (c) corresponds to
slab, cylinder and sphere geometry,
respectively. 

(a) (b) 

(C) 
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(a) (b) 

(c) 

 
 
 
Figure 5. Dimensionless Log Mean T2
versus dimensionless group a/(ρ*T2B).
(a), (b), (c) corresponds to slab, cylinder
and sphere geometry, respectively. 



 

 82

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 

 

(a) (b) 

(c) 

Figure 6. Contour plot of Dimensionless Log Mean T2 with respect to dimensionless group ρa/D and
a/(ρ*T2B). (a), (b), (c) corresponds to slab, cylinder and sphere geometry, respectively. In each plot, the
dimensionless Log mean T2 goes to unity (the first line at the top corresponds to 01.1,2 =DLMT ) when
approaching upper and left sides and it geometrically (geometric ratio is 1.2589) goes to big values when
approaching lower right corner. The center dash line corresponds to characteristic diffusion time equals
bulk relaxation time (a2/(D*T2B)=1), the perpendicular dash line corresponds to characteristic diffusion
time equals surface relaxation time (ρa/D=1) and the parallel dash line corresponds to bulk relaxation
time equals surface relaxation time (a/(ρ*T2B)=1). These three lines divide the plot into four regions. A,
D: diffusion rate dominates bulk relaxation rate and from A to D surface relaxation becomes more and
more important. B, C: bulk relaxation rate dominates diffusion rate and from B to C surface relaxation
becomes more and more important.  
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CPMG Relaxation by Diffusion with Constant Magnetic Field Gradient in a 
Restricted Geometry: Numerical Simulation and Application 

 

ABSTRACT 
Carr-Purcell-Meiboom-Gill (CPMG) measurements are the primary NMR 

technique used for evaluating formation properties and reservoir fluids in well logging 
and laboratory sample analysis. The estimation of bulk volume irreducible (BVI), 
permeability, and fluid typing relies on the accurate interpretation of the T2 distribution.  
The problem is complicated when diffusion in an inhomogeneous field and restricted 
geometry becomes dominant. The combined effects of field gradient, diffusion, and 
restricted geometry are not easily evaluated analytically. We used a numerical method to 
evaluate the dependence of free and restricted diffusion on the system parameters in the 
absence of surface relaxation, which usually can be neglected for the non-wetting fluids 
(e.g., oil or gas). The parameter space that defines the relaxation process is reduced to 
only two dimensionless groups: *D  and *τ . Three relaxation regimes: free diffusion, 
localization, and motionally averaging regimes are identified in the )log,(log *

10
*

10 τD  
domain. The hypothesis that the dimensionless normalized magnetization *ϕ  relaxes as a 
single exponential with a constant dimensionless relaxation time *

2T  is justified for most 
regions of the parameter space. The analytical and numerical solutions are compared 
from the contour plots of *

2T .  The location of the boundaries between different relaxation 
regimes defined in the analytical analysis is challenged by the numerical results. After 
adjustment of boundaries, numerical simulation results and analytical solutions match 
each other for every relaxation regime except for near the boundaries. The parameters, 
fluid diffusivity and pore length, can be estimated from analytical solutions in the free 
diffusion and motionally averaging regimes, respectively.  Estimation of the parameters 
near the boundaries of the regimes may require numerical simulation. 

 

INTRODUCTION 
Carr-Purcell-Meiboom-Gill (CPMG) pulse sequence, as shown in Fig. 1, is 

widely used to measure spin-spin relaxation time 2T . After the initial 
2
π  pulse, spins at 

different locations rotate around the z axis by differing amounts due to the field 
inhomogeneity. A π  pulse is applied (around the rotating imaginary axis) at time τ  to 
refocus the spins, which leads to the formation of the “Hahn” echo at time τ2 . Then 
further application of π  pulses at τ3 , τ5  …, the odd multiples of τ , leads to formation 
of the CPMG echoes at τ4 , τ6  ..., the even multiples of τ . Only when spins are not 
diffusing, can CPMG completely compensate the dephasing of spins due to local 
magnetic field inhomogeneity. 

Many researchers studied the decay of the CPMG spin echo amplitude resulting 
from the combined effects of field gradients, diffusion, and restricted geometries 
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(Kleinberg and Horsfield, 1990, Le Doussal and Sen, 1992, Brown and Fantazzini, 1993, 
Bergman and Dunn, 1995, Bergman et al., 1995, and Axelrod and Sen, 1998). 

 Axelrod and Sen (1998) worked out various limiting cases, as well as 
intermediate cases for CPMG signals based on eigen function expansion. 

Hürlimann (1998) showed that the pores can be classified into large or small 
pores, by comparing the pore size to 00 BD χγ∆ . Only the contributions from the large 
pores show a significant increase of the CPMG decay rate with echo spacing TE. 

Sen et al. (1999) studied the influence of restriction on CPMG spin echo response 
of magnetization of spins diffusing in a bounded region in the presence of a constant 
magnetic field gradient. Depending on three main length scales: DL  diffusion length, gL  
dephasing length, and SL  system length, three main regimes of decay have been 
identified: free diffusion, localization and motionally averaging regimes. They conducted 
numerical simulations to investigate how spins pass from one regime of relaxation to 
another, and more particularly the passage from the localization regime to the motionally 
averaging regime. In this intermediate regime, they observed large oscillations in the 
CPMG signal as a function of the echo number for certain specific values of the time 
between pulses and the magnetic field gradient. 

In this paper, we will conduct numerical simulation to study the combined effects 
of field gradient, diffusion, and restricted geometry on NMR measurements. 

 

NUMERICAL METHOD 
System of Study 

The internal field gradient induced from the magnetic susceptibility difference 
between pore fluids and solid matrix can have a very complicated distribution in natural 
sandstones (Zhang et al., 2000). Thus, determination of the NMR response of the 
magnetization of spins for real systems is a very difficult task. We need to first restrict 
ourselves to the most fundamental yet important case, i.e., a 1-D system in a magnetic 
field with constant gradient. Only after thorough understanding of such ideal system, 
should we proceed to more realistic systems. 

 Therefore, as illustrated in Fig. 2, we define our system of study as a 1-D pore 
(i.e., a slab) along x  (real) axis. The pore is divided into m grid blocks, each represented 
by a grid point. Also, we only consider a magnetic field with a constant gradient, i.e., 

gxBBz += 0 . Spins are free to diffuse through the pore space. 

 

System of Equations 
We can get the following equation only after a few mathematical manipulations 

on the original Torrey’s equations (Torrey, 1956): 

MD
T
MMBi

t
M

z
2

0
2

∇+−−=
∂

∂ γ     [1] 
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where M  is magnetization expressed as a complex variable, yx iMMM += . Let 








 −+−

⋅= BT
tti

eM 2
0ω

ϕ , then ϕ  represents the magnetization with the precession at Larmor 
frequency, 00 Bγω = , and bulk relaxation, BT2 , factored out. 

In addition, introduce normalized magnetization 
0

*

ϕ
ϕϕ = , where 0ϕ  is the 

magnetization at time zero. Then, at 0=t , 1* =ϕ . Hence Eq. [1] becomes: 

( ) *2
0

*
0

*

ϕϕγϕ ∇+−−=
∂

∂ DBBi
t z          [2] 

 For our system of study, i.e., a 1-D pore with constant gradient and spin diffusion, 
Eq. [2] becomes: 

0  and  
22

for        2

*2

0
*

*

><<−
∂

∂+−=
∂

∂ tLxL
x

Dgxi
t

SSϕϕγϕ
 [3] 

 Let 
SL

xx =* , where SL  is system length, and 
0

*

t
tt = . The characteristic time, 0t , 

is also called the dephasing time and it is defined as 
SgL

t
γ

1
0 ≡ , in unit of time/radian. 0t  

represents the time it takes for the spins at 
2
1* −=x  and 

2
1* =x  to dephase by 1 radian 

due to the magnetic field inhomogeneity. A typical value of 0t  is 1.5 msec/radian (with 
810675.2 ×=γ  radians/(Tesla*sec), g = 25 gauss/cm, and SL = 10 µm).  

Eq. [3] is now 

2*

*2

3
0**

*

*

xgL
Dix

t S ∂
∂⋅+−=

∂
∂ ϕ

γ
ϕϕ

    [4] 

We introduce a dimensionless group *D , defined as: 

"timediffusion "
" timedephasing"

1

0

23
0* =









=≡

D
L
gL

gL
DD

S

S

S

γ
γ

 

It is the ratio of dephasing time in an inhomogeneous field and diffusion time across a 
pore of length SL . 

With the definition of *D , Eq. [4] becomes: 
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2*

*2
***

*

*

x
Dix

t ∂
∂+−=

∂
∂ ϕϕϕ

     [5a] 

The initial condition is: 

( ) 10, *** ==txϕ      [5b] 

For boundary condition, we assume completely reflective pore walls for the time being. 
That is, there is no surface relaxation. This assumption is usually true for non-wetting 
fluids (e.g., oil or gas). Then the boundary condition is: 

0*

*

=
∂
∂

x
ϕ  at 

2
1* −=x  and 

2
1         [5c] 

Since CPMG pulse sequence has π  pulses at odd numbers of τ : τ , τ3 , …, we 

introduce another dimensionless group  *τ , defined as SgL
t

τγττ ==
0

* . Then, at ** τ=t , 

*3τ , …, a π  pulse is applied. 

At each π pulse, the spins are rotated 180º about the y’ (rotating imaginary) axis, 
thus immediately after the π  pulse every spin has the same imaginary component, while 
negative real component, as it has immediately before the π  pulse. Therefore, the effect 
of a π  pulse can be expressed as the negative of complex conjugate, i.e.: 

)( **
−+

−= ππ ϕϕ       [5d] 

where −π  and +π  stand for at time immediately before and after a π  pulse. 

Thus far, the diffusion problem is completely mathematically formulated by 
system of equations [5a] to [5d].  

 

Finite Difference 
For numerical stability and second order convergence, we use Crank-Nicholson 

finite difference method to solve the system of equations [5a] to [5d].  

In simple matrix form, Eq. [5a] combined with boundary condition [5c] for all the 
grid blocks is: 

NN BA *1* ϕϕ =+      [6] 

where A and B are mm ×  tri-diagonal matrices and 1* +Nϕ and N*ϕ are 1×m  matrices at 
time step *

1+Nt  and *
Nt , respectively. Eq. [6] is fully expanded as: 
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where, 
m

xxxh jj
1**

1
* =−≡∆= + , **

1
*

NN ttt −=∆ + , and 5.0=θ . 

 To save computational time, we follow the same procedure as in Sen’s paper (Sen 
et al., 1999) to skip calculating *ϕ  at the intermediate micro steps but rather calculate *ϕ  
at echo time ** 2 τnt = , where n is echo number starting from 1. 

 Rewrite Eq. [6] as: NN U *1* ϕϕ =+ , where BAU 1−= , the time evolution matrix for 
a single micro time step **

1
*

NN ttt −=∆ + . Let the number of micro steps in each *τ (or τ ) 

interval be τN , i.e., *

*

t
N

∆
= τ

τ . The dimensionless normalized magnetization 

immediately before the first π  pulse is: 0** ϕϕ ττ NN U= , where 10* =ϕ  is the initial 

condition. Define τNUV =1  and )(2
τNUV −= . The effect of a π  pulse is negative 

conjugate and we assume that the pulse length is infinitesimally small. Then, at ** 2τ=t , 
when the Hahn echo forms, [ ] )()( 0*

21
*2* ϕϕϕ τττ VVU NNN =−= . Similarly, the recursive 

formula for all the echoes is: 

)( 1*
21

* −= nn VV ϕϕ  

where n  is echo number starting from 1. Therefore the matrix 21VV  needs to be computed 
only once and it multiplies the solution from one echo to the next. 

It is obvious from the system of equations that CPMG in 1-D system with 
constant gradient and spin diffusion is solely governed by two dimensionless groups: *D  
and *τ . We choose a domain of *D  (ranging from 10-4 to 102) and *τ  (ranging from 10-1 
to 101.5), which covers typical combinations of the dimensional parameters: D , g , SL , 
and τ  that are often encountered in real systems. A mesh grid of 121 by 121 points on 
the ( *

10log D , *
10log τ ) domain is chosen. 
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 To get accurate numerical simulation results, we need to have large numbers of 
grid blocks and small time step size in order to reach acceptable levels of spatial and time 
truncation errors for the whole ( *

10log D , *
10log τ ) domain.  It is founded that 99 grid 

blocks and 512 time steps in each *τ  interval are sufficient for all regions on the 
( *

10log D , *
10log τ ) domain. 

 

REGIMES OF THE PARAMETER SPACE 
 By the way we define the system of equations, there are only two dimensionless 
groups: *D  and *τ  in the parameter space. Whereas, in the literature (deSwiet and Sen, 
1994, Helmer et al., 1995, and Hürlimann et al., 1995), NMR signal of nuclear 
magnetization due to restricted diffusion in an inhomogeneous magnetic field is often 
characterized by three length scales. They are: the system length, SL , the diffusion length 

τ0DLD ≡ , and the dephasing length 
3
1

0








≡

g
DLg γ

. The diffusion length is a measure of 

the distance traveled by a spin in the half echo time τ . The dephasing length is the length 
over which a spin has to diffuse to dephase by 1 radian. In this way, three ratioes of these 
three length scales will be needed to completely describe the diffusion problem. 
Therefore, we reduce the number of parameters from three to two, which is an important 
improvement that makes the problem much more simple and direct. 

 Three relaxation regimes based on the smallest length scales are identified and 
their governing analytical equations are given in the literature. A brief summary of these 
analytical results is given below, where the original analytical equations are expressed in 
our newly-defined two parameters: *D  and *τ . 

1. Free diffusion regime: 

DL is the smallest of the three length scales. Spins are undergoing unrestricted, 
free diffusion (applies only to the shortest times), as described by Hahn’s formula (Hahn, 
1950): 

( )
( )

3**)3/2(

0
2 ττ nDe

M
nM −=     [7] 

When considering short times after a few spins make contact with the pore walls, 
Hahn’s formula needs to be corrected to the first order due to the wall effect (deSwiet and 
Sen, 1994 and Sen et al., 1999): 

( )
( )

( ) 



 +−

=
**3**)3/2(

0
2 τττ DnCnD

e
M

nM          [8] 

where ( )nC  are numerical constants and depend on the echo number n. 

2. Localization regime: 
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gL  is the smallest of the three length scales. The main characteristic of this 
regime is that the net signal comes principally from the spins which are within one 
dephasing length of the boundaries. The attenuation of nuclear magnetization in this 
regime is given by (deSwiet and Sen, 1994, Hürlimann et al., 1995, and Sen et al., 1999): 

( )
( ) ( ) *3

1
*

1
3*

0
2 ττ nDaeDnp

M
nM −=     [9] 

where the numerical constants ( )np  are for the values of gradient away from the branch 
points (Stroller et al., 1991). 

3. Motionally averaging regime: 

SL  is the smallest of the three length scales. The spins typically diffuse several 
times the pore size, and any magnetic field inhomogeneities are averaged out by their 
motion. The signal decays according to (Sen et al., 1999): 

( )
( ) 












 +−×−= ***

* 1
3

12
112
171

60
exp

0
2

τ
ττ

Dn
n

D
n

M
nM   [10] 

 One advantage of expressing the diffusion problem with two ( )** ,τD  
dimensionless groups instead of three ( )SgD LLL ,,  length scales is that these three 

relaxation regimes can be easily shown on the ( *
10log D , *

10log τ ) domain. As illustrated 
in Fig. 3, three lines, that correspond to the equality between any two length scales (Table 
1), divide the domain into six regions and they intersect at point ( )0,0O  (in log-log scale). 
The inequality of the three length scales is listed for each region on the figure. Region 
BCDO has DL  as the smallest length scale, so it is the free diffusion regime described by 
Eqs. [7] & [8]. Region ABOG has gL  as the smallest, so it is the localization regime 
governed by Eq. [9]. Region GODEF has SL  as the smallest, so it is the motionally 
averaging regime expressed by Eq. [10]. The boundaries between different regimes are 
marked as solid lines, while dashed lines are extension of these boundaries. Table 2 
summarizes these results. 

 
NUMERICAL RESULTS 
 People usually study the decay of magnetization along time scale or as a function 
of echo number (Sen et al., 1999). Then contour plots of *ϕ  need to be created at a series 
values of time to understand the whole relaxation process. Alternatively, we hypothesize 
that *ϕ  relaxes exponentially with *t , characterized by a constant relaxation time *

2T : 

( ) *
2

*

** T
t

et
−

=ϕ  
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where *
2T  is not apparent relaxation time in FID measurement. It is defined as the 

dimensionless relaxation time with respect to the dephasing time, i.e., 
0

2*
2 t

TT = . This *
2T  

is solely due to the diffusion relaxation mechanism. This is because the bulk relaxation is 
factored out in the beginning to get ϕ from M and in the current study, we assume there 
is no surface relaxation on the pore wall. 

If *
2T  does not change with time, then the relaxation of magnetization can be 

described by a single exponential. Figure 4 compares contour lines of *
2T  at two different 

times. Solid curves are at 80* =t , while dashed curves are ten times later in time, i.e., at 
800* =t . Remarkably, except for the left portion of region ABOG, the contour lines of 

*
2T  at these two times overlay on each other very well. This means that for most region in 

the domain, *ϕ  decays single exponentially. The significance of this finding is that now 
only one single contour plot of *

2T , no matter at what time, is enough to describe the 
whole relaxation process. 

 The contour lines of *
2T  at ( ) 802400 *

min
* =×= τt , the solid curves on Fig. 4, will 

represent the numerical simulation results referred to in later discussion. This time is 
when the bottom of the domain, CDE, has the 400th echo. Ten contour lines are picked 
logarithmically from 10*

2 =T  to 10000*
2 =T . Small *

2T  value means fast relaxation and 
large *

2T  value corresponds to slow relaxation. Three boundaries between the free 
diffusion, localization, and motionally averaging regimes are also shown as solid lines. 

 The contour lines of *
2T  are V-shaped over most of the domain. In the region of 

BCDO, at smaller *D , straight lines with slope about 
2
1−  are observed. Then at larger 

*D , contour lines turn and curve up. The left portion of region ABOG has wiggling 
curves, while the right portion has vertical and equally spaced curves that curve a little at 
the bottom to connect with the curves in region BCDO. In region GODEF, there are 
curves that almost vertical throughout the *τ  range. 

 

COMPARISON OF NUMERICAL SIMULATION RESULTS WITH 
ANALYTICAL SOLUTION 

In the section REGIMES OF THE PARAMETER SPACE, we listed the 
analytical equations (Eq. [7] to [10]) that describe the three asymptotic regimes of 
relaxation. In this section we will compare our numerical simulation results with each of 
them. Contour lines of *

2T  from analytical equation will be shown only for the region 
where it applies and in the central main plot, while the numerical simulation results will 
be shown for comparison at the corner. 

Figure 5 compares the contour lines of *
2T  from Eq. [7], which is for the free 

diffusion regime in region BCDO, and those from numerical simulation results. Contour 
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lines of *
2T  from analytical equation are straight lines with slope 

2
1− . By overlaying with 

the numerical simulation results, it can be concluded that the straight line portion of the 
numerical results matches very well with the analytical solution. 

 Eq. [8] of the free diffusion regime also applies to region BCDO, where DL  is the 
smallest. It is the first order correction to Eq. [7] to account for the partial wall effect. 
Figure 6 shows the contour lines of *

2T  from Eq. [8] for region BCDO and the numerical 
simulation results. At smaller *D , the straight line part of Eq. [8] is similar to that of Eq. 

[7] but with a slope not exactly equal to 
2
1− . Then at larger *D , the contour lines begin 

to curve up. Eq. [8] reaches its limit of validity near boundary OD. When comparing 
numerical simulation results with analytical solution, the contour lines qualitatively 
match with each other with numerical simulation predicting turning points at smaller *D  
values. 

 Figure 7 shows the contour lines of *
2T  from Eq. [9] plotted for the localization 

region ABOG and those from numerical simulation. Unlike analytical solution, contour 
lines of numerical simulation results curve up at larger *D . There is apparent discrepancy 
between the numerical result and analytical solution. 

 Figure 8 plots contour lines of *
2T  from Eq. [10] for region GODEF and those 

from numerical simulation. Vertical lines with slight curvature at the bottom are 
observed. Numerical result and analytical solution match with each other very well. 

 

ADJUSTMENT OF BOUNDARIES BETWEEN RELAXATION REGIMES 
Thus far, only region ABOG has apparent discrepancy between numerical result 

and analytical solution of Eq. [9]. 

 Let us examine Fig. 7 more carefully. Suppose we draw a dividing line in region 
ABOG of the numerical simulation results, shown as the dashed line, it can be observed 
that the left portion of this region looks similar to the analytical solution with wiggling 
contour lines. In addition, the right portion of this region looks like the extension of the 
motionally averaging regime showing the same feature of vertical, equally spaced 
contour lines with slight curvature at the bottom to meet curves in the free diffusion 
regime. Therefore, we hypothesize that the region of motionally averaging regime should 
be extended to smaller *D  values. 

 What is this line then? Can we justify the position of it? Recall that the numerical 
constants ( )np  in Eq. [9] are for the values of gradient away from the branch points. 
Briefly speaking, with magnetic field gradient 0=g , the eigenvalues of the diffusion 
problem, Eq. [5a], are real. As g  increases along the positive real axis, eigenvalues shift, 
and successive pairs of real-valued eigenvalues coalesce at branch points to form 
complex conjugate pairs. The branch points occur at special values of the gradient, which 
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in our notation, correspond to certain values of *D , i.e., 
[ ]3.667-  3.522-  3.358-  3.123-  2.829-  2.363-  1.257-log *

10 =D . 

 Figure 9 plots these vertical branch point lines on the ( *
10log D , *

10log τ ) domain. 
Notice that the line we proposed that Eq. [10] should be extended to coincides with the 
first branch point, i.e., 257.1log *

10 −=D . The remaining branch point lines are to the 
left side of this line. 

Previous researchers (Stoller et al., 1991 and deSwiet and Sen, 1994) have found 
that oscillations in the echo signal become large near branch points. In the left portion of 
region ABOG which is densely distributed with branch point lines, we also observe 
wiggling contour lines from numerical simulation. Therefore, our numerical simulation is 
consistent with other researchers’ observation. 

 Figure 4 in Sen’s paper (Sen et al., 1999) also supports our hypothesis that the 
portion of region ABOG that is to the right side of the first branch point line should be 
motionally averaging regime instead of localization regime. In that figure, Sen had 

984.0log *
10 −=D  greater than the first branch point value of –1.257. He also had the 

parameters chosen such that gL  is the smallest length scale. So, in our notation, the point 
he calculated lies within the localization region ABOG and to the right of the first branch 
point line. However, his simulation result matched perfectly well with the analytical 
equation for the motionally averaging regime, instead of that for the localization regime. 
Thus, this gives support to our hypothesis that Eq. [10] should be used to the right of the 
first branch point line. 

 As the final support to our hypothesis, Fig. 10 shows the contour lines of *
2T  from 

Eq. [10] up to the first branch point line HI. The numerical simulation results are also 
shown for comparison at the lower left hand corner. By comparing the two and seeing 
that they match with each other very well, we can conclude that the region of the 
motionally averaging regime should be extended to the first branch point line HI. 

 Looking at the numerical results in Fig. 10, we can further challenge the original 
boundary between the free diffusion regime and the motionally averaging regime by 
proposing a line through the vertices of the V-shaped contour lines. The boundary 
between the free diffusion regime and the localization regime also moves upward to 
intersect the other two boundaries. The upper plot in Fig. 11 shows the newly-adjusted 
boundaries imposed on the numerical simulation results. Line B’O’ has the same slope as 

the old one, that is, 
3
1− . It appears to be tangent to the contour line of 10*

2 =T . Line 

G’O’ is the first branch point line. Line D’O’ goes through the vertices of the contour 
lines and has a slope of 1− . These three new boundaries intersect at point O’ (-1.257, 
0.565). 

With these newly-adjusted boundaries, contour lines of *
2T  from four analytical 

equations are shown in the lower four plots of Fig. 11. Compared with original 
boundaries, the new ones yield a much better matching between the numerical results and 
analytical solutions. Also, with the new boundaries, the previous problem that analytical 
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equation [8] reaches its limit of validity in some transitional region is avoided. Most 
importantly, each analytical solution is valid only in a limited region, while numerical 
simulation predicts relaxation time for every region in the ( *

10log D , *
10log τ ) domain. 

 

APPLICATION: DETERMINATION OF D  AND SL  

The numerical simulator, together with the analytical equations, can be used to 
determine fluid diffusivity and pore length for systems relaxing at different relaxation 
regimes.  

Figure 12 plots *
21 T over a range of *τ on a log-log scale at fixed *D . 

Alternatively, 21 T  can be plotted over a range of τ  on a log-log scale. The only 
difference between these two plots will be a common up-down or left-right shift 
( 010log t ) of the curves while keeping the same shape. Six solid lines are for *

10log D  
values of [-4 -3.5 -3 -2.5 -2 -1.5]. As *τ  increases (at fixed *D ), nuclear magnetization 
first relaxes in the free diffusion regime then in the localization regime. So at smaller *τ , 
straight lines with slope 2 are observed, then wiggling curves are seen at larger *τ . Three 
dashed lines are for *

10log D  values of [-1 -0.5 0]. They are in the transitional region 
between free diffusion regime and motionally averaging regime. So, they first have a 
straight line part (slope 2) then gradually level off. Four dotted lines are for *

10log D  
values of [0.5 1 1.5 2]. Magnetization relaxes in the motionally averaging regime and the 
relaxation rate is independent of *τ . Therefore, horizontal lines are observed. 

In practice, 2T  measurements at different echo spacings with applied constant tool 
gradient are often performed. Thus, Fig. 12 can be prepared with the ( )τ,1 2T  data pairs. 
(Note: only consider the relaxation rate due to diffusion mechanism.) Depending on the 
shape of the resultant curve, fluid diffusivity, D , and system length, SL , can be 
determined. 

 If a straight line with slope 2 is observed, then magnetization decays in the free 
diffusion regime. From analytical equation [7], the dimensionless relaxation rate is: 

2**
*

2 3
11 τD

T
=      [11a] 

 Thus, fluid diffusivity can be determined from 2T , half echo spacing τ , and tool 
gradient G  as : 

( )2
2

3
GT

D
γτ

=      [11b] 

If a horizontal line is observed, then magnetization decays in the motionally 
averaging regime as described by Eq. [10]. Since relaxation rate is independent of *τ  in 
this regime, the second term of the exponent can be ignored. Thus, 
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**
2 120

11
DT

=      [12a] 

Therefore, the system length can be determined from D , tool gradient G , and 2T . 

4
1

2
22

120








=

TG
DLS γ

    [12b] 

If magnetization decays in the transitional region, then numerical simulator is 
needed. Just as analytical equations [11a] and [12a] where *

2T  is explicitly expressed as a 
function of *D  and *τ , numerical simulator implicitly expresses *

2T  as a function of the 
same two parameters. Thus in principle, D  and SL  can be determined. 

 

CONCLUSIONS 
Numerical method for simulating CPMG with diffusion was systematically 

developed. The parameter space that defines the relaxation process can be reduced to 
only two dimensionless groups: *D  and *τ , instead of as ratios of three length scales. 
Three relaxation regimes: free diffusion, localization, and motionally averaging regimes 
are identified in the ( *

10log D , *
10log τ ) domain. The hypothesis that the dimensionless 

normalized magnetization *ϕ  relaxes as a single exponential with a constant 
dimensionless relaxation time *

2T  is justified for most regions of the parameter space. 

The analytical and numerical solutions are compared from the contour plots of 
*

2T .  The location of the boundaries between different relaxation regimes defined in the 
analytical analysis is challenged by the numerical results. After adjustment of boundaries, 
numerical simulation results and analytical solutions match each other for every 
relaxation regime except for near the boundaries. 

The parameters, fluid diffusivity and pore length, can be estimated from analytical 
solutions in the free diffusion and in the motionally averaging regime, respectively. 
Estimation of the parameters near the boundaries of the regimes may require numerical 
simulation. 
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Table 1. The boundary between different relaxation regimes. 

L  domain *D , *τ  domain 
SD LL =  *

10
*

10 loglog D−=τ  

gD LL =  *
10

*
10 log

3
1log D−=τ  

Sg LL =  *
10log0 D=  

 
 
Table 2. Summary of the partition of the ( *

10log D , *
10log τ ) domain into regions of three 

relaxation regimes. 
Smallest L  Regime Region Equation 

DL  free diffusion BCDO 7 & 8 

gL  localization ABOG 9 

SL  motionally averaging GODEF 10 
 



 

 

 

 

90°
pulse

180°
pulse

180°
pulse

180°
pulse

180°
pulse

τ2 τ4 τ6 τ8

envelope of spin-echo amplitudes 






 −∝
2

exp
T

t

TE

 
 

FIG. 1. CPMG pulse sequence. It begins with a 90° pulse followed by a series of 180°
pulses. The first two pulses are separated by a time period τ , whereas the remaining
pulses are spaced τ2  apart. Echoes occur halfway between 180° pulses at τ2 , τ4 …,
where τ2  equals TE, the echo spacing. Spin echo amplitudes decay with the time

constant 2T . 
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 of study. A 1-D pore divided into m grid blocks with total length SL . 
ence of a magnetic field with constant gradient g. 
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FIG. 3. Partition of the ( *
10log D , *

10log τ ) domain into three relaxation regimes:
region BCDO for the free diffusion regime ( DL the smallest, Eqs. [7] & [8]), region
ABOG for the localization regime ( gL  the smallest, Eq. [9]), and region GODEF for
the motionally averaging regime ( SL  the smallest, Eq. [10]). 
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FIG. 4. Comparison of contour lines of *
2T  at 80* =t , solid curves, and at 800* =t ,

dashed curves. 
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FIG. 5. Contour lines of *
2T from Eq. [7] plotted for region BCDO. Straight lines with

slope 
2
1−  are observed. Numerical results are shown for comparison at the upper

right hand corner. 
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FIG. 6. Contour lines of *
2T  from Eq. [8] plotted for region BCDO. Straight contour

lines with slope around 
2
1−  are observed for smaller *D . Contour lines begin to curve

up at larger *D . Numerical results are shown for comparison at the upper right hand
corner. 
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FIG. 7. Contour lines of *
2T  from Eq. [9] plotted for region ABOG. Numerical results

are shown for comparison at the lower right hand corner. 
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FIG. 8. Contour lines of *
2T  from Eq. [10] plotted for region GODEF. Vertical lines

with slight curvature at the bottom are observed. Numerical results are shown for
comparison at the lower left hand corner. 
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FIG. 9. Vertical branch point lines on the ( *
10log D , *

10log τ ) domain. The first branch
point line at 257.1log *

10 −=D coincides to our proposed dividing line between the
motionally averaging regime and the localization regime. 
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FIG. 10. Contour lines of *
2T  from Eq. [10] with boundary between the localization

regime and the motionally averaging regime moved to the first branch point line HI.
Numerical results are shown for comparison at the lower left hand corner. 
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G. 11. Comparison of numerical simulation results with analytical solutions with
wly-adjusted boundaries.
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FIG. 12. Relaxation rate vs. half echo spacing on a log-log plot. Straight lines with
slope 2 are observed for free diffusion regime and horizontal lines for motionally
averaging regime. 
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Laboratory Technique for CPMG Gradient Measurements 
Mark Flaum and George J. Hirasaki 

 
Introduction 

 
In NMR well logging, nearly all NMR-based measurements consist of CPMG 

determination of T2 distributions.  The CPMG results can be used to calculate or predict a 
number of properties of the formation, including porosity and permeability [1].  It has 
also been shown that these T2 results are valid in the presence of strong static magnetic 
field gradients when the echo spacing is adequately short [2].  To facilitate tool design 
and to take advantage of the added sensitivity to diffusion presented by field gradients, 
logging tools are designed with static field gradients. 
 In laboratory spectrometers, field homogeneity is more easily achieved, so static 
gradients are in general not present. In order for a laboratory to contribute to the 
development of down-hole techniques to take further advantage of the fixed gradient, it is 
necessary to create an equivalent to the fixed gradient field to carry out experiments.  One 
laboratory NMR spectrometers that operates in the low field is the Resonance 
Instruments (RI) MARAN spectrometer.  The MARAN field gradient is supplied by an 
electromagnetic coil that provides a gradient field when powered.  To mimic a static field 
gradient, the MARAN gradient coil must perform what is termed a pseudo-static gradient 
measurement.  In that measurement, the gradient coil is powered for the duration of the 
echo train, so that all acquisition and radio-frequency pulses take place in a constant 
gradient. 
 This paper will review a number of steps that should be taken to improve the 
quality of fixed-gradient measurements in the laboratory.   Some of the issues addressed 
here will be specific to the MARAN-Ultra spectrometer, others apply to gradient CPMG 
measurements in general.  A number of results published by Hürlimann in [3] are 
reproduced here using the MARAN.  The experiments in [3] were carried out in the 
fringe field of a high-field NMR spectrometer.  Experiments here will be carried out with 
a pseudo-static field gradient. 
 
Maintaining Temperature Stability 
 
 With any electromagnet-based gradient system, the operation of the gradient coils 
produces a great deal of heat, which must be eliminated to avoid heating the magnet up 
and changing the Larmor frequency.  RI provides a cooling system to perform this 
function, but the cooling process faces limitations that must be taken into account when 
planning an experiment.   The probe discussed here is the 40mm model, and the gradient 
amplifier was supplied by RI . 
 RI provided information about the allowable duty cycles for the gradient coils.  
This duty cycle limits the amount of time the gradient can be used for without risking 
overheating the gradient coil.  Duty cycle is calculated by dividing the pulsing time 
(number of echoes multiplied by echo spacing) by the sum of the pulsing time and the 
wait time.  These limits can be quite restrictive; for example the 51mm gradient coil 
functioning at 25 G/cm has a duty cycle of only 0.11.  The fuse provided for the gradient 
amplifier may not be adequate to allow some pulse sequences within the duty cycle of the 



 

 

gradient coil.  There is a temperature cut off on the surface of the gradient coils which 
will terminate the pulse sequence and cut off current to the gradient coil if temperatures 
rise too high (above approximately 80°).   
 Even an experiment within the restrictions of the duty cycle may encounter 
problems with temperature control.  Heat removal through the coolant stream may not be 
adequate for some pulse sequences.  If the temperature of the sequence drifts over time, 
the Larmor frequency of the probe is likely to drift. Furthermore, the diffusivity of the 
sample might also increase, leading to results that are very difficult to interpret.  It is 
possible to monitor temperature of the 
system by checking for changes in the 
frequency offset (O1, determined on the 
MARAN through the script AUTOO1) at the 
end of every measurement.  For a one-
second echo train at a duty cycle of 0.09 and 
a gradient strength of 16.8 G/cm, the offset 
reached an equilibrium within 3 hours of 
pulsing.  For higher gradient strengths, the 
equilibrium requires more time.  Figure 1 
shows the frequency offset as a function of 
pulsing time for three different gradient 
strengths, all with a duty cycle of 0.09 and 
one-second echo collection time.   Note that 
the equilibration times depend upon the duty 
cycle of the pulse sequence and the heat 
removal supplied.   Figure 1 indicates it will 
be necessary to perform extra experiments to 
bring the spectrometer to equilibrium before 
gradient CPMG data can be collected . 
 
Optimizing Echo Shapes in the 
Gradient CPMG 
 

In a homogeneous field, only a 
single coherence pathway contributes 
to the echo [3].  In a field gradient, on 
the other hand, multiple pathways 
contribute to the echo [2].  It is 
possible to calculate the contribution 
of any given pathway, but the 
computation required to solve for all 
the coherence pathways of a complete 
sequence is not feasible [4].  In 
practice, it is possible to assume that 
echoes beyond the third have 
converged to what is referred to as 
asymptotic echo [5], meaning the echo sh
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Figure 1: Frequency drift as a function of total
pulsing time.  The echo train is 1 second long, and
the duty cycle is 0.09. 
Figure 2. Pulse Spacing Shift 
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reaches a constant after only a few echoes. 
It has been proposed that there is an optimal echo shape, achievable by reducing 

the initial pulse spacing (between the initial π/2 pulse and the first π pulse) of the CPMG 
from the usual value equal to the Carr-Purcell time (τcp).  Hürlimann [3] reports an 
increase in signal-to-noise of 15% when the τcp is reduced by a time equal to the ninety 
degree pulse length (P90) divided by π/2, i.e. P90/(π/2).  Furthermore, the symmetry of 
the echo is greatly increased through this procedure.  

A number of gradient CPMG measurements were carried out with a sample of 
pure water in a pseudo-static gradient using the MARAN spectrometer.  The results are 
shown in Figures 2 and 3.  Figure 2 shows an optimization of the shift of the initial pulse 
spacing compared to data from Hürlimann.  The X axis represents the shifted timings of 
the initial pulse spacing, so that the recommended value takes place at -1. The Y axis is 
the average magnitude (over 3rd through 50th echoes), normalized to the average echo 
magnitude with no modification to the initial pulse spacing.  In both cases curve reaches a 
gradual maximum not far from the predicted value.  The results from our laboratory show 
a distinctly higher peak, indicating the difference between our modified and unmodified 
results is greater than that observed by Hürlimann.  We suspect instrumental and 
sampling differences would account for this difference of shape.  It should be noted that 
the pulse sequence included with the MARAN spectrometer has a modified first pulse 
spacing which corresponds to P90/2, which is very close to Hürlimann’s recommended 
value of . P90/(π/2) 

Figure 3 shows the effect of modifying the first pulse spacing on subsequent 
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Figure 3: First ten echoes.  The upper subplot shows these echoes without the 
optimization, the lower figure with the optimal correction predicted in [4]. 
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echoes.  A very similar figure appears in [3].  The echoes have improved in amplitude 
and symmetry.  Note that the 20% increase in amplitude only occurs on echoes after the 
first, and that the first echo is not affected by the modified timing. 
 
Sampling Technique 
 In any gradient CPMG measurement, the echo is significantly narrower than in a 
gradient-free measurement.  The sampling technique chosen thus becomes significantly 
more important.  
 The first factor that must be ensured is that the sampling window is well centered 
on the peak of the echo.  The built-in single point sampling technique does not ensure the 
single point is sampled from the center of the echo.  In fact, the timing for a sixteen point-
per-echo measurement requires an offset to place the echo in the center of the window.   
Figure 4 plots the echoes from two measurements against the sample points across the 
echo.  The first measurement includes no offset to the pulse sequence, while the second 
includes a small offset equal to the dwell time to better center the echo.  The results in 
Figure 4 are for water at a gradient 
strength of 16.8 G/cm, with 16 points 
separated by a dwell time of 10 µs and 
an echo spacing of 0.4 ms.  With most 
sampling methods, it is valuable to 
ensure the entire echo has been 
sampled, or at least as much of the echo 
as possible. 
 There are several ways to 
sample the echo.  The simplest is to 
simply choose the center point, and to 
ensure this point is indeed the peak of 
the echo.  This technique has the 
advantage of not risking the inclusion 

of noise from outside the echo itself, 
but it does not take advantage of the 
entire area of the echo to increase the 
signal to noise ratio.   
 The second technique of 
choice would be to integrate across 
the entire echo, or to simply sum all 
of the sampled points.  This method 
takes full advantage of the amplitude 
of the echo, but also includes parts of 
the sampling window that include 
little or no signal.  The end result is 
that a great deal more signal is 
sampled, but the noise has increased 
as well. 
 Perhaps the optimal technique 
for sampling the echoes is the 
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Figure 5: Matched Filter Data 
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matched filter.  For this technique, the asymptotic or average echo is determined, and 
then each echo is summed using the shape of the asymptotic echo as a weighted sum.  
Therefore the peak of the echo gets the greatest weight, while regions with little or no 
amplitude contribute little to the sum.  This is the technique used in [3].  In this study, the 
matched filter was prepared as an average over the first 60 echoes, excluding the first few 
to ensure asymptotic shape has been achieved.  The matched filter data is plotted in 
Figure 5. 
 Signal-to-noise ratios for these 
techniques obtained from a water sample at 
16.8 G/cm and 500 repetitions are 
summarized in Table 1. 
  
Summary 
 
 Performing a gradient CPMG 
measurement in the laboratory is an important 
part of supporting oilfield NMR logging tools 
as well as investigating new NMR method
complications in the laboratory, but those issu
information.  Three aspects of the measuremen
presented.  The data quality of a gradient CPMG
these guidelines for maintaining and monitorin
shape, and echo sampling. 
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Introduction 
 

The most common technique for examining diffusion through NMR is the pulsed 
field gradient sequence (PFG) [1].  The PFG measures the distance spins diffuse over a 
controlled time.  This contains information about the structure of a porous network when 
the space the spins have to diffuse in is smaller that the total distance they would freely 
move in the given time, giving rise to restricted diffusion.  The comparison of measured 
diffusivity of a particle diffusing through a porous system to the free diffusion of the bulk 
fluid gives information about the length scale of the pore space 

As a technique for probing pore structure, the PFG has an advantage over 
relaxation-based methods as it is also sensitive to pore throat size, instead of merely the 
pore bodies.  Throat size relates more reliably to permeability in carbonates, where the 
pore bodies and pore throats may not be correlated.  Furthermore, the measurement need 
not be restricted to a single pore.   In fact, as the diffusion time is increased, the 
diffusivity attenuation approaches a limit related directly to the tortuosity.  The tortuosity 
provides a much stronger relationship to the permeability than T2 distributions in 
carbonates[2]. 

The major limitation of the PFG method is that diffusing spins are also subject to 
relaxation, meaning it is not possible to use diffusion times longer than the relaxation 
time [3].  This problem is of particular weight with vuggy carbonates, which represent a 
system where T2-based permeability indicators tend to fail.  The problem here is that 
relevant length scales are well beyond the maximum diffusion length of water in a pore 
space.  In order to approach this problem, we carried out a series of measurements with 
pentane as the saturating fluid in place of water. Pentane has a longer bulk relaxation 
time, and a higher diffusivity than water and less surface relaxation.  The results of these 
experiments are presented here. 
 
Background 
 
Hahn Echo 
 
 Diffusion has a major effect on NMR magnetization in the presence of a magnetic 
field gradient.  When the magnetic field is not uniform, any spin (polarized proton) that 
diffuses from one field strength to another will lose coherence with the non-relaxed spins, 
and will therefore not be measured when the total number of coherent spins is counted in 
a spin echo. The standard spin echo method, called the Hahn echo, nutates the spins into 
the transverse plane and allow them to precess for a controlled amount of time τ, then flip 
the spins 180°. The spins still in the transverse plane then precess back to their original 
position, where they achieve coherence called a ‘spin echo’, as shown in Figure 1.  The 
mechanism of gradient induced relaxation is different from the standard transverse 
relaxation (called T2, and based on the spin-spin interactions in the system), but both 



 

 

affect the attenuation of the magnetization.  The echo attenuation in a gradient is as 
follows [4]: 
 

                                                                                                         (1) 
 

 
Where M is magnetization as a function of time (M0 at time 0), τ is the time 

between the radio-frequency pulses, T2 is the characteristic transverse relaxation time, γ is 
the gyro-magnetic ratio, D is the self-diffusion constant of the relaxing fluid, and G is the 
strength of the field gradient.  From this expression, the diffusion constant of the fluid 
can often be evaluated directly from the magnetization decay of a Hahn echo in a known 
constant field gradient.  
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Figure 1: The Hahn Echo in a Magnetic Field Gradient 
110

 Field Gradient 

many systems, however, it is not possible to determine diffusion using a 
 echo.  For example, if the diffusivity or gradient strength is too high, the 
on decay may be too fast to measure accurately, and techniques usually used 
is decay tend to mute the effect of the diffusion term.  Also, if the diffusion 
ery small, or if the diffusion term in the exponential is small compared to the 
ue to diffusion in the field gradient may not be significant compared to 

  In porous systems the presence of surface relaxation (due to paramagnetic 
 the matrix or similar mechanisms) tends to reduce T2 leaving diffusion-based 
egligible. 
n a Hahn echo is no longer adequate for examining relaxation due to 
 is possible to employ a different pulse sequence, called the Pulsed Field 
in echo (PFG).  A diagram of this pulse sequence is shown in Figure 2.  In 
ce, instead of requiring that the entire experiment take place in a field 
e gradient is applied in two short pulses after each of the radio-frequency 
se gradient pulses are of time width δ and separation ∆,  which referred to as 
n time, as it determines the amount of time the spins are allowed to diffuse.  
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Figure 1: Pulsed Field Gradient  Pulse Sequence. 
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Figure 2: Pulsed Field Gradient Sequence. 

The first pulse spreads the spins into positions where they are allowed to diffuse, 
effectively encoding the phase of the spins.  Then, after the 180° pulse inverts the 
precession, second gradient pulse returns the spins to their original orientation for 
measurement, with the difference that now those spins that have diffused are not decoded 
to their original position are no longer measured in the spin echo.  In this way, it is 
possible to separate the diffusion relaxation from transverse relaxation by comparing the 
magnetization with gradient pulses present to the magnetization with the gradient 
strength reduced to zero according to the equation [4]: 
 

       (2) 
 
 

 

 
The Pulsed Field Gradient – Stimulated Echo 
 
 In some systems, however, it is still often not possible to measure D with these 
methods due to the short transverse relaxation time.  It may be possible to take advantage 
of the fact the longitudinal relaxation time is often larger than the transverse relaxation 
time.  For rock systems, the longitudinal to transverse relaxation time ratio is on average 
1.5:1.  To take advantage of this, the spins can be moved from the axis where they decay 
according to the transverse relaxation time to the axis where they experience longitudinal 
relaxation. This pulse sequence, called the Pulsed Field Gradient – Stimulated Echo 
(PFG-SE), is shown in Figure 3.   This sequence again begins with a 90° rf pulse, 
followed by a gradient pulse of width δ to encode the phase of the spins.  In this case, 
however, another 90° rf pulse follows, moving the spins into the plane of longitudinal 
relaxation, where they are effectively stored without allowing transverse decay.  
Immediately preceding the end of this diffusion time, another 90° pulse moves the spins 
back to the transverse plane so as to allow the development of an echo similar to the spin 
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echo above, called the stimulated echo.  Finally, a second gradient pulse undoes the 
spreading, again decoding the phase excluding those that have diffused out of coherence.  
This sequence is characterized by two times, τ1 and τ2, corresponding to the start of the 
second and third 90° rf pulses.  It should also be noted that δ is very small compared to 
the other times in the pulse sequence, so ∆, the time between gradient pulses, is generally 
assumed to be equal to the time the spins diffuse.  The equation for the magnetization of 
this system is [1]: 

 
                         (3) 
 

 
This result can be compared to the result obtained with the gradients equal to zero, giving 
once again equation (2), except that the noise levels for systems with T1 greater than T2 
will be reduced.   
 

NMR Diffusion in Porous Media 
 

In a porous system, there are two distinct categories of diffusion.  The first is free 
diffusion, where the diffusing particle has no contact with the surrounding surfaces and 
thus behaves as any diffusing particle in a bulk fluid.  The second is restricted diffusion, 
where the diffusing particle is obstructed and thus reflected by the walls of the pore body.  
There are two parameters that determine which regime a measurement describes.  The 
first is diffusion length: 

 
                      (4) 

 
Where D0 is the bulk self-diffusion constant. The second is the characteristic spatial 
wavenumber associated with the gradient pulse [2]: 
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Figure 3: Pulsed Field Gradient  – Stimulated Echo Sequence. 

( )














 −∆−−

−
=








3

2ln 22

2

1

1

12

0

δδγτττ DG
TTM

M

∆= 06Dld



 

 113

 
                                             (5) 
 

The importance of the equation (4) is evident, for when the diffusion length 
approaches the pore radius, diffusion starts to deviate from free diffusion.    
 The parameter k from equation (5) is already evident in equations (1), (2), and (3), 
and is also fundamental in describing the magnetization in a restricted diffusion system 
[2]:  

 
                              (6) 
 

 
Where [r(0) – r(∆)] expresses the distance traveled by a spin during time ∆.  If k is small, 
this expression can be truncated to the first term, and the magnetization is only dependant 
on k2, but when k becomes large, higher order terms can be significant.  In practice, this 
equation is almost always truncated to determine D, in which case the equation can be 
rewritten as follows [2]: 

 
                                     (7) 
 

 
Time Dependant Diffusion: Short Diffusion Times 
 
 As indicated in equation (7), the diffusivity that is determined from this 
expression is dependent on the diffusion time ∆ of the experiment.   If the measured D(∆) 
differs from the bulk value, restricted diffusion is indicated.  A plot of measured 
diffusivity against diffusion length will diverge from linearity when this occurs.  At very 
short diffusion times ∆, the observed diffusion should behave exactly as the bulk-fluid 
diffusion, as no spins diffuse long enough to encounter the restrictions.  As the diffusion 
time increases, however, more and more spins will reach the wall and face restriction, so 
the observed diffusivity will begin to diverge from the bulk-fluid diffusivity.   At the 
onset of this divergence, there will be a thin layer of spins close to the surface of the pore 
that diffuse under restriction, while those in the body of the pore diffuse as bulk fluid. 
The deviation of the observed diffusion constant from the actual self-diffusion constant 
will therefore be proportional to the surface to volume ratio.  The equation to describe 
this deviation is [6]:   

 
                         (8) 
 

It should be noted that if the diffusion times are extremely short, the equation 
collapses down to free diffusion.  It has also been speculated that the development over 
time should give some indication of the varying length scales throughout a system.  The 
logic is this: if there are multiple distinct length scales in a sample, the development of 
each length scale should cause an inflection in a curve of Dobs vs. ∆ representing each 
changing length scale.  The smallest range of pore sizes would cause a deviation at short 
times, and later, when the diffusion in a larger pore range begins to encounter restriction, 
there will be a new effect visible in the deviation.  As long as the pore size distribution 
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consists of several distinct ranges, separated perhaps by one or two orders of magnitude, 
it should be possible to distinguish the contributions from the different pore-size ranges.  
This would be a particularly useful measurement in carbonate rocks, where the vugs will 
have a large effect on relaxation measurements but are often be excluded from 
predictions of permeability as they are assumed to have little contribution to flow [9].  
 
Time Dependent Diffusion: Long Diffusion Times 
 
 Returning once more to equation (7), the other regime of interest is when ∆ is 
large.  If ∆ is large enough to describe diffusion through the entire system, D(∆) should 
approach a constant value representing the macroscopic diffusion coefficient.  The 
macroscopic diffusion constant is essentially a  measure of the path length through the 
pore network, as the proton is essentially allowed to diffuse long enough to navigate 
through all connected pores.  As a measure of connectivity, the macroscopic diffusion 
constant (called Deff) can be used to determine the formation factor F, a fundamental 
parameter related to tortuosity.  Formation factor is actually the ratio of conductivity 
through a porous system compared to conductivity through free fluid.  The relationship 
between Deff and F is as follows [2]:  

 
                                 (9) 

 
 

Where φ is the porosity of the system and τtort is the tortuosity.  Deff is often 
referred to as the tortuosity limit or asymptote. 
 
 
Limits of the Pulsed Field Gradient 
 

In order to evaluate the limit Deff, there must remain enough sensitivity to 
distinguish diffusion-based decay from T2 decay.  The key parameter is again the ld.  If 
the signal disappears before ld has approached the length scale of the entire network, it 
will not be possible to evaluate the 
Deff.  The ld can be increased by 
modifying either the relaxation time 
or the diffusivity of the saturating 
fluid.  In this experiment, pentane 
was the saturating fluid chosen, as 
pentane relaxes slower than water and 
has a higher diffusivity as well, Table 
1.  Experiments have been carried out 
with success in the literature with 
polarized xenon gas as the saturating 
fluid [7].  Polarized xenon is not 
available for these experiments, but w
practical.  Ying Zhang (this report) meas

φτ F
DD

D
tort

eff
00 ==
Compound Relaxation 
Time (s) 

Diffusivity 
(cm2/s) 

Water 2.8 2.0*10-5 
Pentane 4.5 2.0*10-4 
Ethane  
(28° C, 575 psi) 

20  1.1*10-3 

Xenon [10] 1  
(O2 doped) 

5.7*10-2 

Table 1: Relaxation Times and Diffusivities 
114

e expect that supercritical ethane will prove 
ured the values of ethane in Table 1. 
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Figure 4: Water-Saturated T2 Distribution 

 
Experimental 
 

Dry rocks were wrapped in 
heat-shrinkable teflon tubing, saturated 
with water or air-saturated pentane and 
capped. T2 distributions for the two 
samples chosen are in Figures 4 and 5.  
Figure 4 shows the samples water-
saturated, Figure 5 saturated with 
pentane.  In the latter case, the 
distribution have shifted to longer 
times, suggesting more time available 
to diffuse before the sample has 
relaxed.  According to these 
distributions, the signal for either 
sample saturated with pentane can be 
expected to relax completely though T2 
relaxation alone after 4 to 5 seconds. 

These rocks were measured 
using the PFG-SE sequence.  The 
gradient pulses were 3 G/cm, with a 
duration δ of 750 microseconds.  The 
gradient diffusion time ∆ was varied 
until the signal was no longer 
detectable.    Equipment limitations 
provided a minimum ∆ of 20 
milliseconds.  
 
Results 
 

The results of the PFG-SE 
measurements are shown in Figures 6 and 
7. Figure 6 shows the results of the 
magnetization decay.  The magnetization 
decay shown is due to diffusion only, as the 
relaxation contribution is canceled out by 
comparison with the results of same 
measurement with gradient strength of 
zero.  For unrestricted diffusion, this plot 
would show a straight line, but restrictions 
change the slope over time.  The more 
permeable sample seems to diffuse within a 
single pore space throughout the 
measurements carried out here, as the slope 
of reduced magnetization against diffusion 
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Figure 6: Diffusion decay comparison
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Figure 7: Restricted diffusion comparison.  Both samples 
are Yates field carbonates saturated with pentane.  
Reduced diffusivity refers to measured diffusivity divided 
by the measured diffusivity of bulk pentane.  Diffusion 

length is defined as 6Do∆  

time is largely constant.  The less 
permeable sample shows the 
definite onset of restriction.  In 
Figure 7, reduced measured 
diffusivity is plotted against 
diffusion length.  The first sample 
had a permeability of 165 mD and a 
porosity of 19 p.u.  The second had 
a permeability of 9 mD and a 
porosity of 10 p.u.  The first curve 
appears to decay slowly, and does 
not achieve a plateau before 
sufficient relaxation occurs to leave 
no measurable signal.  The second 
sample, on the other hand, appears 
to have reached a plateau.  The 
samples presented here are both 
vuggy carbonates, though by visual 
inspection the first seems to contain 
significantly more vugs than the 
second. 

In neither sample was it possible to estimate the surface-to-volume ratio, as the 
minimum diffusion times were far too long.  In both rocks the magnetization had dropped 
below half of the relaxation-only amount at the first measurement.  The 165 mD sample 
indicates a formation factor of 20, very similar to the value of 27.8 predicted by Archie’s 
law [7] using a cementation exponent of 2.  This value, calculated from the last 6 data 
points, seems low, as the cementation exponent for a vuggy carbonate is expected to be 
higher than the sandstone value of 2.  This formation factor corresponds to a tortuosity of 
4.  This sample does not appear to have reached the correct tortuosity limit.  A formation 
factor of 670 can be calculated for the 9 mD sample using equation (9).  Archie’s Law [7] 
would predict a value between 100 and 1000, depending on the value of the cement 
exponent.  No measurements were made to estimate the cementation exponent.  This 
formation factor corresponds to a tortuosity of 67.  This is much larger than that of the 
high permeability rock. 
 Irwan Hidajat and Kishore Mohanty (this report) have compiled a study of pore 
morphology and rock characterization data that will be used with these experimental 
techniques to further examine the extended PFG methods.  A set of six carbonate rock 
samples with complicated pore structures were selected and characterized using mercury 
porosimetry, thin section analysis, and basic core petrophysical measurements.  These 
cores will then be analyzed in a CT scanner, and finally measured with PFG NMR.  The 
objective of these measurements will be to develop a complete understanding of the pore 
morphology of the samples, as well as to develop new techniques for evaluating and 
predicting vuggy carbonate properties with NMR. 
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Conclusions 
 

PFG measurements on two samples with distinctly different permeabilities gave 
very different results, suggesting that it may be quite possible to evaluate permeability 
from these diffusion measurements.  The results also indicated that a pentane-saturated 
system may be adequate for some samples, but it will be necessary to extend the 
maximum achievable diffusion length for to obtain a complete result for others.  The 
possibility of extending these diffusion lengths with supercritical ethane seems 
promising.  
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STUDY OF VUGGY CARBONATE CORES 

USING X-RAY CT 
 

 

I. Hidajat and K. K. Mohanty  

Department of Chemical Engineering 

University of Houston, 

Abstract 
 
Estimating petrophysical properties of carbonate rocks from NMR measurement is much 

less reliable than of sandstone. The difficulty arises from the fact that most carbonates 

exhibit three different length scales from intragranular porosity, intergranular porosity 

and vugular porosity. The existing permeability correlation from T2 measurement 

assumes that vugs do not contribute to permeability, hence a 750 ms cut off is chosen to 

exclude the vug contribution. This may not always be the case, since vugs may be 

connected in some formation and contribute to the permeability. The objectives of this 

work are to identify vug connectivity by using X-ray CT scan, and to improve NMR 

permeability correlation. CT scanning of dry Yates core material shows that uniformity 

of vug distribution varies from core to core. CT scanning of core floods in one Chester 

Field sample shows that the vugs are non-touching. The Chang and Vinegar correlation 

estimates the permeability correctly from NMR T2 response because the vugs do not 

contribute to permeability in this sample. In the future, similar core flood experiments 

will be performed in some samples from the Yates field. 
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Introduction 

 
More than 50% of the world’s hydrocarbon reserves is in carbonate formations. However, 

estimating petrophysical properties from NMR measurements in carbonate rocks have 

always been a bigger challenge than in standstone formations. Broad pore size 

distribution in carbonates, from intragranular porosity to large vugs is the reason for the 

unreliable estimation of transport properties from NMR logging. 

 

Fig. 1 shows a simplified diagram for classifying different type of pore space in 

carbonate rocks1.  The intragranular porosity is the porosity inside the grain (φµ). The 

intergranular porosity is the pore space between the grains. And the vuggy porosity is 

defined as the pore space within grains or crystals, or that is significantly larger than 

grains or crystals.2 Vugs can be thought of as the absence of one or more grains in 

packing, or if there is a significant pore space within the grain. The more popular 

definition for vugs in industry is a pore space that can be easily seen because usually 

these pores are larger than 200 µm in size.1  

 

 

   

 

 

 

 

 

 

 

 

 

From Fig. 1, we can write: 

  

  fv + fm + fg = 1       (1) 

Intergranular, fm 

Intragranular, fg 
φφφφµµµµ: grain porosity 

Vug
fv 

Fig. 1 Simplified Model of Carbonate Rocks 
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where fv is the vug volume fraction, fm is the intergranular volume fraction and fg is the 

grain volume fraction. The overall porosity (φ) is given as : 

 

  φ = fv + fm + fg φµ  ,      (2) 

 

where φµ is the intrinsic porosity of the grain. 

 

Vugs can be classified into separate vugs and touching vugs.2 Separate vugs are defined 

as pore space that is interconnected only through the interparticle porosity. Touching 

vugs are pore space that forms an interconnected pore system independent of the 

interparticle porosity. 

 

Chang and Vinegar et al. (1997) measured 27 carbonate core plugs and found the 

permeability correlation from the NMR T2 distributions as:3 

 

  k = 4.75 (φNMR, 750)4 (T2, 750)2     (3) 

 

where k is the permeability (mD), φNMR, 750 and T2, 750 is the porosity and the logarithmic 

mean of T2 distribution with T2 < 750 ms. The correlation assumes that vugs have T2 

distribution larger than 750 ms and they do not contribute to the permeability. In other 

words, they assume that all the vugs are separate vugs. This may not be the case, in some 

instances vugs may be connected and contribute to the permeability. 

 

Hicks (1990) conducted CT Scan study on carbonate rocks from Fenn Big Valley and 

San Andres (TX) dolomite.4 He studied the porosity distribution, residual saturations and 

miscible displacements. However, no study was conducted on the connectivity of the 

vugs. 

 

The objective of this work is to study the vug connectivity and to improve the 

permeability correlation from NMR for vugs contribution. From CT Scan experiment, we 
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can investigate the connectivity and the distribution of the vugs in the rock sample. Other 

measurements such as: permeability, capillary pressure, Sor and thin section will also be 

performed. By combining the matrix structure information from the thin section and the 

vugs distribution from the CT Scan, we will be able to construct a representative porous 

media and simulate different vugs configuration.  Finally, from all the information both 

from experiment and simulation we may identify the condition where vugs contribute to 

permeability. 

 

2. CT Scan Experiments 

CT scanning is done by using a Deltascan 2060HR CT scanner manufactured by 

Technicare Corporation. The scanner gantry has been rotated 90o from the conventional 

vertical position so that the scan plane is horizontal. This enables the fluid displacements 

to be conducted in the vertical direction. The scanner resolution is 0.25 x 0.25 x 2mm for 

each voxel. All experiments reported here were conducted with the scan plane horizontal. 

For flow experiments, a core is put into a hassler type core holder. The core holder is 

mounted on a table positioned below the gantry and the table is raised or lowered to place 

the core at the desired position. The position of the core can be reproduced to within 5 

µm in the vertical direction. During a scan, the X-ray source rotates through a full circle 

in the scan plane around the core sample. The 720 detectors located around the scan 

circle detect the X-ray signal, then the host computer will process the data and perform a 

reconstruction. The reconstructed image is a matrix of 512 x 512 pixels, and each pixel 

represents the voxel size as described above. Table 1 shows the available parameters in 

the CT scan and the selected parameters for the entire experiments done. 

 

Parameter Available Selected 

Voltage (KV) 80, 100, 120 120 

Current (mA) 25, 50, 75, 100 75 

Scan time (sec) 2, 4, 8 8 

Scan diameter (cm) 12, 25, 40 ,50 12 

Slice thickness (mm) 2, 5, 20 2 

Table 1. Available and Selected Parameter in CT-Scan 
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The first CT experiment was done on Yates samples. The samples were directly scanned 

without putting them into the coreholder. No flow experiment was done at this stage. The 

purpose was to study the sample structure and identify suitable positions for plugging 1” 

or 1.5” core samples. 

 

The second CT experiment was done on a Chester Field sample and involved flooding 

experiments. The purpose of the experiment is to investigate the porosity distribution, 

preferential flow path, and oil saturation at Swr and at Sor. 

 

3. Yates Samples 

Six Yates bare samples are scanned, and we present three of them since the other three 

can be categorized into these three classes. The scans were taken at 1-cm interval. 

 

The first sample is 17C9; the sample is 6 cm in diameter and 6.8 cm in height. The 

sample is not cylindrical. The picture of the sample is shown in Fig. 2. Visually it is 

observed that the matrix is very tight and there are a lot of vugs; the vug size is about 1 

mm to 3 mm. Vugs are distributed more or less uniformly throughout the sample (Fig. 3). 

Small diameter plugs are representative of the medium. 

 

The second sample is 2416; the sample is 7 cm in diameter and 10.6 cm in height. The 

matrix also looks very tight and vugs are not uniformly distributed. Fig. 4 shows the 

picture of the sample. Vugs occur only in some layers, and the other layers there are 

almost free of vugs, as indicated in CT images (Fig. 5). Most of the vugs are small and 

less than 0.5 mm. A few vugs have size about 1 mm. 

 

The third sample is 7626B; the sample is 8 cm in diameter and 17.9 cm in height. The 

matrix looks permeable, but the vugs distribution is not uniform. Fig. 6 shows the picture 

of this sample, which has some large vugs with size up to 5mm. The small vugs are 

scattered throughout the sample with size about 1mm – 2mm. The CT images are given 

in Fig. 7. 
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Fig. 2. Picture of  sample no.17C9 

Slice 1 Slice 3

Slice 5 Slice 8
Fig. 3 CT Image for sample 17C9 at selected slices 
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Fig. 4 Picture of sample no. 2416

Slice 1 Slice 4

Slice 7 Slice 10 
Fig. 5 CT Images for Sample 2416 at selected slices 
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Fig. 6 Picture of sample no. 7626B 

Slice 4 Slice 6 

Slice 11 Slice 15 
Fig. 7 CT Images for Sample 7626B at selected slices 
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4. Flooding Experiment on Chester Field Sample 

The second experiment is performed on the Chester Field sample. This plug is a 

dolomite, 1” in diameter and 1.5” long. According to the data from Shell, the porosity is 

17.8% and the air permeability is 115 mD.  The calculated pore volume from the porosity 

is 3.6 ml. Vugs of about 1 – 2 mm are visible on the plug. The sample was put into a core 

holder and an overburden pressure about 700 psi was applied. The scans were taken at 4-

mm interval. Doped brine and doped oil are used in some experiments to increase the 

image contrast. 

 

The following experiments were conducted on this sample: 

1. The core was scanned in vacuum condition. 

2. The core was saturated with brine (1 wt% of NaCl), and scanned. By subtracting with 

the CT image taken in step 1, porosity distribution of the core was obtained.  

3. The core was flooded with doped brine (15 wt% of NaI in brine) and scanned at 

different time. From this step, preferential flow path was investigated. 

4. The core was flushed with brine and scanned. 

5. The core was flooded with doped oil (15 wt% of Iododecane in n-decane) until Swr 

was reached and scanned to obtain oil distribution at Swr. 

6. The core was flooded with brine until Sor was reached and scanned to obtain oil 

distribution at Sor. 

7. The core was taken out from the coreholder. NMR T2 response was measured at Sor 

condition. 

8. The core was cleaned by using Dean-Stark extraction apparatus. Toluene was used as 

the cleaning fluid. The amount of water collected was measured. 

9. The core was resaturated with brine and NMR T2 response was measured at 100% 

brine condition. 

 

The porosity distribution from the CT Scan for each slice is given in Fig. 8. The light 

colored area indicates high porosity region. The high porosity regions are uniformly 

distributed in slices 1 through 6; they shift towards the upper right area in slices 7 -10. 
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Each slice contains a few vugs (from one vug to about four vugs) and the vugs appear not 

to be touching. 

 

Figs. 9 through 11 show the doped brine profile at 0.25, 0.5 and 1.25 injected pore 

volume, respectively. Note that the color represents the CT number difference between 

the core with doped brine and the core in vacuum condition, and it is not actual doped 

brine concentration. Because of the machine problem during the experiment, we were not 

able to take scan of the fully saturated core at 100% doped brine saturation at the same 

scan condition. The CT number difference reflects the concentration of doped brine in the 

core. At 0.25 PV injected, the brine had not reached slices 7 through 10. The doped brine 

flowed through high porosity area, and clearly some vugs in slice 1, 2, 3 and 6 were in 

this flow path. At 0.5 PV injected, the brine breakthrough had occurred.  As shown in 

Fig. 10, there were vugs in slices 9 and 10 in this flow path. Similar to the porosity 

distribution, the flow path moved to the upper right past the slice 7. There were some 

vugs in slice 9 that had not been invaded by doped brine yet, indicating that those vugs 

were not in the preferential flow path and channeling occurred. At 1.25 PV injected, most 

of the pore space was invaded by doped brine. The vugs are indicated with very light 

color region. This experiment shows that although the vugs are not touching, most of 

them are in the preferential flow path. 

 

Fig. 12 shows the doped oil distribution at irreducible water saturation (Swr) condition. 

The calculated Swr from the material balance is 52%. The data for slice 1 is corrupted and 

it is not shown. Again, the color refers to the CT number difference between the core 

with doped oil and the core with saturated brine. To obtain the doped oil saturation 

profile, scan from 100% doped oil saturated core is needed which is not available at this 

stage. The CT number difference, again, reflects the amount of doped oil. From the CT 

images in Fig. 12, the doped oil appears to be almost uniformly distributed in the high 

porosity area. All the vugs are occupied by the oil. 

 

Fig. 13 shows the doped oil profile at the residual oil saturation (Sor) condition. The 

computed Sor from the material balance is 32%. Again, the color refers to the CT number 
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difference between the core with doped oil and the core with saturated brine. From the 

CT images in Fig. 13, the doped oil is mostly swept from the middle region of the core, 

and the Sor resides in the perimeter region. The pore volume computed from the Dean 

Stark extraction is 3.67 ml, which is consistent with the pore volume calculated from the 

porosity data from Shell. 

 

T2 distributions at Sor and 100% brine saturation are shown in Fig. 14. The solid line 

represents the T2 distribution at 100% brine saturated. The peak occurs at 600 ms and the 

computed T2logmean is 381 ms. There is a significant region at T2 greater than 750 ms, 

indicating the presence of vugs. The computed permeability from Eq. 3 is 99 mD, which 

agrees well with the air permeability. This also confirms that vugs are non-touching and 

do not contribute to its permeability. The dashed line in Fig. 14 shows the T2 distribution 

for the doped oil. The main peak is at 500 ms and the response is bimodal because the oil 

is not pure n-decane. The dotted line represents the T2 distribution for the core at Sor. This 

T2 distribution is very similar to that for brine saturated core. The similarity in T2 

distribution greater than 750 ms indicates that the vugs are filled with brine. This is 

unlike the common assumption that residual oil occupies the vugs in water wet media. 
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Porosity %

Fig. 8 Porosity Distribution from CT Scan
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Slice 2Slice 1 Slice 4 Slice 5 

Slice 7 Slice 6 Slice 9 Slice 10 Slice 8 

Slice 3 

CT Number 
Fig. 9 Doped brine profile at 0.25 PV Injected 
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Slice 2Slice 1 Slice 4 Slice 5Slice 3

Slice 7 Slice 6 Slice 9 Slice 10Slice 8 

CT Number

Fig. 10 Doped brine profile at 0.5 PV Injected 
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Slice 2Slice 1 Slice 4 Slice 5Slice 3 

Slice 7 Slice 6 Slice 9 Slice 10 Slice 8 

CT Number 

Fig. 11 Doped brine profile at 1.25 PV injected 
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Slice 7 Slice 6 Slice 9 Slice 10 Slice 8 

Slice 2 Slice 4 Slice 5Slice 3

CT Number 

Fig. 12 Doped Oil Profile at Swr 
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Slice 2 Slice 4 Slice 5Slice 3

Slice 7 Slice 6 Slice 9 Slice 10 Slice 8 

CT Number 

Slice 1

Fig. 13 Doped Oil Profile at Sor 
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Summary 

This work has demonstrated the use of X-ray CT scanning for studying porosity 

distribution, vugs distribution, preferential flow path and oil distribution at Swr and Sor for 

core samples. CT scanning of dry Yates core material shows that uniformity of vug 

distribution varies from core to core. CT scanning of core floods in one Chester Field 

sample shows that the vugs are non-touching. The Chang and Vinegar correlation 

estimates the permeability correctly from NMR T2 response because the vugs do not 

contribute to permeability in this sample. In the next six months, similar core flood 

experiments will be performed in some samples from the Yates field. 
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